• Sagavanirktok River Spring Breakup Observations 2016

      Toniolo, H.; Tape, K.D.; Tschetter, T.; Homan, J.W.; Youcha, E.K.; Vas, D.; Gieck, R.E.; Keech, J.; Upton, G. (2016-12)
      In 2015, spring breakup on the Sagavanirktok River near Deadhorse was characterized by high flows that destroyed extensive sections of the Dalton Highway, closing the road for nearly 3 weeks. This unprecedented flood also damaged infrastructure that supports the trans-Alaska pipeline, though the pipeline itself was not damaged. The Alaska Department of Transportation and Public Facilities (ADOT&PF) and the Alyeska Pipeline Service Company made emergency repairs to their respective infrastructure. In December 2015, aufeis accumulation was observed by ADOT&PF personnel. In January 2016, a research team with the University of Alaska Fairbanks began monitoring and researching the aufeis and local hydroclimatology. Project objectives included determining ice elevations, identifying possible water sources, establishing surface meteorological conditions prior to breakup, measuring hydrosedimentological conditions (discharge, water level, and suspended sediment concentration) during breakup, and reviewing historical imagery of the aufeis feature. Ice surface elevations were surveyed with Global Positioning System (GPS) techniques in late February and again in mid-April, and measureable volume changes were calculated. However, river ice thickness obtained from boreholes near Milepost 394 (MP394) in late February and mid-April revealed no significant changes. It appears that flood mitigation efforts by ADOT&PF in the area contributed to limited vertical growth in ice at the boreholes. End-of-winter snow surveys throughout the watershed indicate normal or below normal snow water equivalents (SWE 10 cm). An imagery analysis of the lower Sagavanirktok aufeis from late winter for the past 17 years shows the presence of ice historically at the MP393–MP396 area. Water levels and discharge were relatively low in 2016 compared with 2015. The mild breakup in 2016 seems to have been due to temperatures dropping below freezing after the flow began. Spring 2015 was characterized by warm temperatures throughout the basin during breakup, which produced the high flows that destroyed sections of the Dalton Highway. A comparison of water levels at the East Bank Station during 2015 and 2016 indicates that the 2015 maximum water level was approximately 1 m above the 2016 maximum water level. ii Maximum measured discharge in 2016 was approximately half of that measured in 2015 in the lower Sagavanirktok River. Representative suspended sediment sizes (D50) ranged from 20 to 50 microns (medium to coarse silt). An objective of this study was to determine the composition and possible sources of water in the aufeis at the lower Sagavanirktok River. During the winter months and prior to breakup in 2016, overflow water was collected, primarily near the location of the aufeis, but also at upriver locations. Simultaneously possible contributing water sources were sampled between January and July 2016, including snow, glacial meltwater, and river water. Geochemical analyses were performed on all samples. It was found that the overflow water which forms the lower Sagavanirktok aufeis is most similar (R2 = 0.997) to the water that forms the aufeis at the Sagavanirktok River headwaters (Ivishak River), thought to be fed by relatively consistent groundwater sources.