• Investigation of thermal regimes of lakes used for water supply and examination of drinking water system in Kotzebue, Alaska

      Bendlova, Tereza; Arp, Christopher D.; Duffy, Lawrence K.; Schnabel, William E.; Barnes, David L. (2012-08)
      Many villages in Arctic Alaska rely on lakes for water supply, such as the Alaskan City of Kotzebue, and these lakes may be sensitive to climate variability and change, particularly thermal regimes and corresponding effects on water quality. Thus, I initiated a study of water supply lakes in Kotzebue to collect data for developing a model to hindcast summer thermal regimes. Surface (Tws) and bed (Twb) temperature data collected from two water supply lakes and two control lakes from June 22nd-August 28th 2011 showed a similar pattern in relation to air temperature (Ta) and solar radiation with more frequent stratification in the deeper lakes. The average Tws for all lakes during this period was 14.5°C, which was 3.4°C higher than Ta for the same period. I modeled Tws from 1985 to 2010 using Ta, and theoretical clear-sky solar radiation (TCSR) to analyze interannual variability, trends, and provide a baseline dataset. Similar to patterns in Ta for this period, I found no trend in mean Tws for the main lake used for water supply (Devil's Lake), but considerable variation ranging from 12.2°C in 2000 to 19.2°C in 2004. My analysis suggests that 44% of years during this 25 year period maximum daily Tws surpassed 20°C for at least one day. This hindcasted dataset can provide water supply managers in Kotzebue and other Arctic villages with a record of past conditions and a model for how lakes may respond to future climate change and variability that could impact water quality.
    • Processes controlling thermokarst lake expansion rates on the Arctic coastal plain of Northern Alaska

      Bondurant, Allen C.; Arp, Christopher D.; Jones, Benjamin M.; Daanen, Ronald P.; Shur, Yuri L. (2017-08)
      Thermokarst lakes are a dominant factor of landscape scale processes and permafrost dynamics in the otherwise continuous permafrost region of the Arctic Coastal Plain (ACP) of northern Alaska. Lakes cover greater than 20% of the landscape on the ACP and drained lake basins cover an additional 50 to 60% of the landscape. The formation, expansion, drainage, and reformation of thermokarst lakes has been described by some researchers as part of a natural cycle, the thaw lake cycle, that has reworked the ACP landscape during the course of the Holocene. Yet the factors and processes controlling contemporary thermokarst lake expansion remain poorly described. This thesis focuses on the factors controlling variation in extant thermokarst lake expansion rates in three ACP regions that vary with respect to landscape history, ground-ice content, and lake characteristics (i.e. size and depth). Through the use of historical aerial imagery, satellite imagery, and field-based data collection, this study identifies the controlling factors at multiple spatial and temporal scales to better understand the processes relating to thermokarst lake expansion. Comparison of 35 lakes across the ACP shows regional differences in expansion rate related to permafrost ice content ranging from an average expansion rate of 0.62 m/yr on the Younger Outer Coastal Plain where ice content is highest to 0.16 m/yr on the Inner Coastal Plain where ice content is lowest. Within each region, lakes vary in their expansion rates due to factors such as lake size, lake depth, and winter ice regime. On an individual level, lakes vary due to shoreline characteristics such as local bathymetry and bluff height. Predicting how thermokarst lakes will behave locally and on a landscape scale is increasingly important for managing habitat and water resources and informing models of land-climate interactions in the Arctic.