• Establishing and testing detection methods for anti-icing and deicing chemicals using spectral data

      Fulton, Gabriel; Belz, Nathan; Meyer, Franz; Stuefer, Svetlana (2019-08)
      Snow and ice accumulation on pavement reduce roadway surface friction and consequently result in diminished vehicle maneuverability, slower travel speeds, reduced roadway capacity, and increased crash risk. Though the use of chlorides and other freeze-inhibiting substances have been shown to reduce these negative factors, methods to quantify and analyze snow and ice remediation methods as well as the imposed loss of material are needed to allow state and municipal agencies to better allocate winter maintenance resources and funding. The use and application of chlorides, sand, and their related mixtures have proven to be highly effective for controlling or removing the development of ice on the roadway surface. However, if the amount of salt in solution becomes too dilute, then it no longer retains the capacity to control the development of, or to melt, ice on the roadway and may prove to be more detrimental by allowing the previously melted material to refreeze with a smoother (i.e., more slippery) surface state. The goal of this project was to determine to what extent winter roadway surfaces can be analyzed using spectrometry to determine the longevity and coverage of various types of applications. Using a systematically paired analysis of changes in spectrometric curves as solution concentrations change, relationships were generated which detected change in deicing and anti-icing compounds reliably in a lab setting. Field results were less reliable, suggesting that further comparisons and a more in-depth spectral library are needed.
    • Numerical Simulation of Snow Deposition Around living Snow Fences

      Petrie, John; Zhang, Kun; Shehata, Mahmoud (2019-09-13)
      In this study, computational fluid dynamics (CFD) was used to investigate the air flow around porous snow fences to gain insight into snow transport and deposition in the vicinity of fences. Numerical simulations were performed to validate the CFD approach using experimental data from a wind tunnel study. Subsequent simulations were used to test the use of a porosity model to represent fence geometry and determine the effect of fence spacing for fences comprised of multiple rows. The results demonstrate that CFD simulations can reproduce the aerodynamics around porous fences. Additionally, the flow field generated with a porosity model is in close agreement with that from a model with explicit representation of fence porosity. Simulations of fences comprised of two rows spaced at various distances demonstrate that when the row spacing is small the fence behaves as a single row.