• Evaluating the Potential Effects of Deicing Salts on Roadside Carbon Sequestration

      Fay, Laura; Ament, Rob; Hartshorn, Tony; Powell, Scott (2019-01)
      This project sought to document patterns of road deicing salts and the effects of these salts on the amount of carbon being sequestered passively along Montana Department of Transportation roads; it was designed collaboratively with a related roadside project that tested three different highway right-of-way management techniques (mowing height, shrub planting, disturbance) to determine whether they have the capacity to increase soil organic carbon. Our sampling did not reveal elevated salt levels at any of the nine locations sampled at each of the three I-90 sites. The greatest saline concentrations were found at the sample locations farthest from the road. This pattern was consistent across all three sites. The range of soil organic matter (SOM) was broad, from ~1% to >10%. Generally, SOM values were lowest adjacent to the road and highest farthest from the road. We found no or weak evidence of a relationship between our indices of soil salinity and SOM levels, with electrical conductivity, exchangeable calcium, and cation exchange capacity. Results imply that if road deicing salts are altering patterns of roadside SOM and potential carbon sequestration, this effect was not captured by our experimental design, nor did deicing salts appear to have affected roadside vegetation during our most recent sampling effort. Our findings highlight the value of experimentally separating the multiple potentially confounding effects of winter maintenance operations on roadside soils: roads could focus the flow of water, salts, and sands to roadside soils. How these types of mass inputs to roadside soils might influence medium- or long-term carbon dynamics remains an open question, but their fuller characterization and possible flow paths will be essential to clarifying the role of roadside soils in terrestrial soil organic carbon sequestration strategies.