• A Catalog of Hydroclimatological Data for Alaska's Coastal Zone

      Carlson, Robert F.; Weller, Gunter (University of Alaska, Institute of Water Resources, 1972-05)
      In order to perceive a better understanding of the interrelationships of the coastal zone water we proposed a research project which was to sort out many of the complex variables. The project was not begun due to the lack of sufficient funds. We did, however, begin a limited literature search and listing of hydroclimatological data sources of Alaska's coastal zone. We felt this would be a modest but useful start towards the larger study. It should also have some practical usefulness to others. This data catalog is a result of this initial study. Because of the wide variety of types of agency which collect data and the literally hundreds of sources through which they are reported, it is often quite bewildering for even experienced investigators to sort out what can be found and where. Although we are sure that the catalog is far from complete, we feel that it is a useful beginning towards an attempt to better understand the hydroclimatological processes in Alaska's coastal zone. We wish to invite contributions and criticisms which could lead to an improved and more comprehensive version at some future date.
    • Bio-Processes of the Oxidation Ditch When Subjected to a Sub-Arctic Climate

      Ranganathan, K. R.; Murphy, R. Sage (University of Alaska, Institute of Water Resources, 1972-05)
      Alaska's far northern area is sparsely populated primarily because of a severe climate which varies from northern temperate to Arctic. Construction and power costs are high. Skilled operating personnel are scarce and expensive, if available. Receiving streams are said to be delicate, particularily in the winter, when little possibility for reaeration exists due to a total ice cover. The oxidation ditch modification of the extended aeration activated sludge process appears to be well suited for the treatment of wastes in this environment. Past operating data on a plant of this type located in Interior Alaska (near Fairbanks) indicated it may be well suited to treat small volumes of domestic waste economically, with low sludge production, and minimal sensitivity to low temperatures.
    • Application of the Finite-Element Method for Simulation of Surface Water Transport Problems

      Guymon, Gary L. (University of Alaska, Institute of Water Resources, 1972-06)
    • Application of Artificial Recharge Technology for Managing the Water Resources - Anchorage, Alaska

      Guymon, Gary L. (University of Alaska, Institute of Water Resources, 1972-06)
      The purpose of this report is to explore the usefulness of artificial recharge in Alaska where there are significant known water supply problems, specifically Anchorage, Alaska. More importantly, however, this report is intended as a vehicle for updating what is known about artificial recharge and for making this information available to water resources agencies and water supply planners in Alaska. The report is not intended to be an original scientific research but is a synthesis of new knowledge developed by the writer and others within the last half-decade. This report concentrates primarily on artificial recharge by off-stream basins in an effort to narrow what is a rather broad field. The concepts discussed under this restricted heading, however, are generally applicable to other recharge methods such as on-stream artificial recharge. Artificial recharge by basins is defined for purposes of this report as the practice of ponding water in constructed off-stream ponds with the explicit intention of allowing water to infiltrate into the underlying aquifer.
    • Development of a Conceptual Hydrologic Model for a Sub-Arctic Watershed

      Carlson, Robert F. (University of Alaska, Institute of Water Resources, 1972-06)
      The Caribou-Poker Creek Research Watershed began as an Alaskan inter-agency effort in 1969. As more data becomes accumulated, as more hydrologic analysis is accomplished and as a greater variety of activities are carried out on the watershed, there is a need to understand the complete hydrologic system of the watershed. This report describes the development of a general hydrologic system model which describes the runoff occurrence on the watershed. The model will provide a basis upon which to make comparative observations, to suggest changes in·the model structure and to point out further measurement needs. A conceptual model study such as this work should not be thought of as a final answer to all systems analysis within the watershed or even the most desirable answer in many cases. There is a definite need, however, for a conceptual model because of the variety of activities and investigators, many of which do not have a complete understanding of the whole system. A complete and flexible conceptual model provides a convenient focal point for all types of investigators, regardless of their background and interest in the overall system. The Caribou-Poker Creek Research Watershed is located approximately 25 miles northwest of Fairbanks, Alaska. It is about 40 square miles in size and covers a variety of terrain which is typical of Interior Alaska. Other details concerning this watershed may be found in Slaughter (1971). Results of hydrologic data to date has been primarily data collection and reporting (Slaughter, 1972). The model as it is offered in this report is not intended to be a complete study of conceptual watershed modeling. Rather, the intention is to illustrate the derivation of a conceptual model and illustrate how it is applied to a particular watershed.
    • Minerals and United States Policy

      Park, C.F. Jr (University of Alaska Mineral Industry Research Laboratory, 1972-08)
      All indications are that the United States is going to need very much larger amounts of all nonrenewable resources in the future than are being used at present. Assuming that the population is stabilized at about 300 million people by the year 2000, and that the present per capita consumption of nonrenewable raw materials is maintained, then the nation will require 1/3 more raw materials than at present. If standards of living improve, the demands will be correspondingly greater.
    • Iron in Surface and Subsurface Waters, Grizzly Bar, Southeastern Alaska

      Hoskin, Charles M.; Slatt, Roger M. (University of Alaska, Institute of Water Resources, 1972-08)
      Atomic absorption spectrophotometric measurements for total iron were made on 69 samples of water from 8 different environments in an outwash fan built by meltwater streams from the retreating Norris Glacier on granodiorite bedrock. Norris Glacier ice contained no iron (3 samples), a subglacial stream contained 5.5 ppm Fe (1 sample), and a meltwater lake fronting Norris Glacier contained 0.7 ppm Fe (3 samples). Iron content of ground water from outwash ranged between 0.0 and 17.0 ppm (6 samples); surface streams fed by emergent ground water on the fan periphery contained 0.0 to 0.2 ppm Fe (13 samples). Taku Inlet waters contained 6.4 ppm Fe (3 samples). Subsurface water from an intertidal mud flat contained between 0.0 and 27.0, X 5.9, ppm Fe (31 samples). Surface and subsurface water from a bog and associated stream contained 1 ppm Fe (12 samples). Little exchangeable Fe was found. In situ measurements in water for Eh showed large positive values (+0.30 to +0.50 volts) and pH was slightly alkaline. The single most important source of iron was vermiculitized biotite. Iron was transported in water in the particulate state, except in outwash ground water where particulate Fe+3 was reduced to dissolved Fe+2. Iron deposits of Fe(OH)3 were found near the top of the outwash water table.
    • A Survey of Lentic Waters with Respect to Dissolved and Particulate Lead

      Nyquist, David; Casper, L. A.; LaPerriere, Jacqueline D. (University of Alaska, Institute of Water Resources, 1972-11)
      Some of the strongest temperature inversions in the world occur at Fairbanks, Alaska. Benson (1970) has reported that a temperature gradient of 10 to 30C/1OO m is common in the winter inversions that form at Fairbanks. Air pollution is especially severe during these inversions when it is accompanied by the formation of ice crystals in the air, a condition known as ice fog. This phenomenon occurs when the temperature drops below -20F (-35C) (Benson, 1970), and it intensifies with time if the inversion is not broken. The ice crystals in this fog have been found to adsorb dust and gasses, including the lead halides which are present in the air as a result of the combustion of tetraethyl lead and/or other lead-hydrocarbon compounds used as anti-knock additives in automotive gasoline. Lazrus et al. (1970) have found lead concentrations in precipitation to be highly significantly correlated with the amount of gasoline used in the area sampled. There are two factors that bring the concentration of lead to high levels in ice fogs. Evaporation of the ice crystals tends to concentrate pollutants in the air mass, especially over the core area of the city where precipitation is retarded by the heating effect of the city. Also, during the extreme cold weather accompanying this phenomenon, many people allow their cars to idle when they are parked to increase performance and for reasons of personal comfort. Eventually, much of the pollutants suspended in the ice fog is precipitated and causes unnaturally high levels of lead in the snow. (Winchester et al., 1967). It is suspected that some of this particulate lead collected in the snow may be carried along with the associated surface runoff into 1entic (standing) surface waters during thawing. The objectives of this project were: 1. to measure the amount of dissolved and particulate lead in a number of selected 1entic waters in the Fairbanks area, and 2. to measure the amount of lead that has been incorporated into net plankton organisms located in the selected lentic waters.
    • Effect of Waste Discharges into a Silt-laden Estuary: A Case Study of Cook Inlet, Alaska

      Murphy, R. Sage; Carlson, Robert F.; Nyquist, David; Britch, Robert (University of Alaska, Institute of Water Resources, 1972-11)
      Cook Inlet is not well known. Although its thirty-foot tidal range is widely appreciated, its other characteristics, such as turbulence, horizontal velocities of flow, suspended sediment loads, natural biological productivity, the effects of fresh water inflows, temperature, and wind stresses, are seldom acknowledged. The fact that the Inlet has not been used for recreation nor for significant commercial activity explains why the average person is not more aware of these characteristics. Because of the gray cast created by the suspended sediments in the summer and the ice floes in the winter, the Inlet does not have the aura of a beautiful bay or fjord. The shoreline is inhospitable for parks and development, the currents too strong for recreational activities, and, because of the high silt concentration, there is little fishing. Yet, Cook Inlet, for all its negative attributes, can in no way be considered an unlimited dumping ground for the wastes of man. It may be better suited for this purpose than many bays in North America, but it does have a finite capacity for receiving wastes without unduly disturbing natural conditions. This report was written for the interested layman by engineers and scientists who tried to present some highly technical information in such a manner that it could be understood by environmentalists, concerned citizens, students, decision makers, and lawmakers alike. In attempting to address such a diverse audience, we risked failing to be completely understood by any one group. However, all too often research results are written solely for other researchers, a practice which leads to the advancement of knowledge but not necessarily to its immediate use by practicing engineers nor to its inclusion in social, economic, and political decision-making processes. We hope this report will shorten the usual time lag between the acquisition of new information and its use. Several additional reports will be available for a limited distribution. These will be directed to technicians who wish to know the mathematical derivations, assumptions, and other scientific details used in the study. Technical papers by the individual authors, published in national and international scientific and engineering journals, are also anticipated.
    • Distribution of Organics from Salmon Decomposition: Completion Report

      Goering, J.; Brickell, D. (University of Alaska, Institute of Water Resources, 1972-12)
      In the fall of 1969, an OWRR-supported study of salmon carcass decomposition was initiated with the intent of collecting information on the biological and chemical dynamics of the decomposition and deposition of salmon wastes in Alaskan estuaries. The study aim was to elucidate the rates and mechanisms of the chemical transformations that accompany breakdown of fish flesh and to reveal the capacity of the Alaskan estuaries to handle quantities of organic seafood waste without presenting a pollution problem. This study has been in progress for several years, and the results have markedly increased our understanding of the decomposition of such organic materials in coastal streams and estuaries.
    • Sludge Production and Disposal for Small Cold Climate Bio-Treatment Plants

      Tilsworth, Timothy (University of Alaska, Institute of Water Resources, 1972-12)
      Ultimate disposal of wastewater sludge has long been a problem which to a large degree has been ignored. Haney (1971) stated that: "Until process sludge can be handled with minimum environmental impact, we cannot claim to have a viable wastewater treatment process". The relationship of sludge disposal to total treatment processes is emphasized by the fact that sludge handling and disposal represents up to 50 percent of the total treatment capital and operating costs (Burd, 1968). Processing of wastewater sludge will, no doubt, receive increased attention in the future because of environmental concerns for our air, land and water. The present technology for processing wastewater treatment plant sludge is well established and includes conditioning, dewatering, and disposal. Many of these processes are highly sophisticated and relatively expensive. Most of the more advanced processes are unsuitable for small wastewater treatment facilities in Alaska.
    • Transportation economics of coal resources of northern slope coal fields, Alaska

      Clark, P.R. (University of Alaska Mineral Industry Research Laboratory, 1973)
      This paper describes the Northern coal fields, the environment in which they are situated, and various routes and systems for transporting metallurgical qua1ity coal from these deposits to a potential market in Japan. Each transportation mode is discussed with respect to northern Alaska conditions. Capitol and operating costs were developed for each system. If the coal must support the entire transportation system cost, the transportation of coal from the North Slope of Alaska to Japan appears to be economically feasible only from easily mined areas which are close to an ocean shipping port. In the case of transportation cost sharing by other users, or by government subsidization, the prospects of northern coal exploitation would be enhanced. The final feasibility of developing any of this coal deposit cannot be determined until the mining costs and the factors which influence these costs are known.
    • Distribution, analysis, and recovery of fine gold from alluvial deposits

      Cook, D.J.; Rao, P.D. (University of Alaska Mineral Industry Research Laboratory, 1973)
      The United States Bureau of Mines, in its Heavy Metals Program, desired to have research performed to determine the size-frequency distribution and possible economic value of gold particles in the fine size ranges of Alaskan placer deposits. Primary interest was involved in obtaining evidence of the occurrence of fine gold and to determine the ameanability of standard sampling and production methods in the evaluation and recovery processes. A research contract between the United States Bureau of Mines and the University of Alaska was initiated in June, 1968 as the first phase of this investigation, but was subsequently modified in June, 1969 to include beneficiation processes amenable to recovery as well as evaluation methods for fine and flakey gold. In searching the literature relative to fine gold in Alaskan placer deposits, it was found that virtually no research has been devoted to determining the extent of fine gold distribution and its effect on evaluation and subsequent recovery methods. Standard evaluation techniques have relied on gravity methods of concentration and recovery of the visible gold from the concentrate. In general, this has proved satisfactory in that operational recovery methods used were probably not conducive to retaining gold particles of less than 100 mesh in size. Operators have made no attempt to obtain a size analysis of gold in a head sample, but many have kept records of the size distribution of the gold as actually recovered. A review of these records, from selected areas, indicates that the -100 mesh gold represents from 0 to 5% of the total gold recovered. Although figures of this type may point to a probably fine gold loss, the difficulties inherent in evaluating the tailng material or modifying the recovery system have usually discouraged efforts in this direction.
    • Report of research progress 1971-1973

      MIRL (University of Alaska Mineral Industry Research Laboratory, 1973)
    • Procedure for estimating tourism benefits

      Solie, R.J. (University of Alaska Mineral Industry Research Laboratory, 1973)
      Mineral Industry Research laboratory Report No. 29, "Optimum Transportation Systems to Serve the Mineral Industry North of the Yukon Basin in Alaska", considers the transportation needs of the area north of the Yukon. The only industries that can be established there within the foreseeable future are minerals production, recreation, reindeer husbandry, and trapping. The present paper, M.I. R. L. Report No. 29A was originally written as an appendix to Report No. 29. After some consideration, if was decided that al though it is. too detai Ied an analysis of tourism tobe included in M.I.R.L. Report No. 29, it also is too valuable a contribution to not be published at all. Therefore, it has been published in its present form as a separate report. It is recommended that M. I. R. L. Report No. 29 be consulted, especially Chapter 6.
    • Determination mercury in Alaskan coals by flameless atomic absorption

      Rao, P.D. (University of Alaska Mineral Industry Research Laboratory, 1973)
      An oxygen combustion, double gold amalgamation system is constructed for the determination of mercury in Alaskan coals. Solutions have been found for certain problems in design and operation. The effect of operating variables have been thoroughly evaluated and analytical procedure is outlined. The system involves combustion of goal in an oxygen atmosphere and amalgamating mercury on gold coils. The amalgamated mercury is released by heating and measured in an atomic absorption cell.
    • Water Quality in Alaskan Campgrounds

      Murphy, R. Sage (University of Alaska, Institute of Water Resources, 1973-01)
      This report presents an evaluation of water quality in Alaskan Campgrounds using laboratory determinations and on-site evaluations. In general, ground water quality was found to be excellent and surface water quality unacceptable for human consumption and total body contact recreation. The most pressing need was found to be the provision of an approved drinking water supply for each campground. The· environmental health aspects of campgrounds were found to be largely neglected. Many of the sewage systems are inadequate resulting in pollution of the ground and surface water. Solid waste was found to be stored and disposed of by unacceptable methods. Finally, many campgrounds are located in swampy areas or located in areas subject to annual flooding.
    • A Study of Sediment Transport in Norwegian Glacial Rivers, 1969

      Østrem, G.; Ziegler, T.; Ekman, S. R. (University of Alaska, Institute of Water Resources, 1973-02)
      Permission to translate this Norwegian report was kindly given by G. Østrem, and the translation by Helga Carstens, while she was in Alaska, is greatly appreciated. Unfortunately, Mrs. Carstens returned to her homeland, Norway, before final editing of the manuscript could be completed. Consequently, any errors in translation are due to the editor, and for these errors, the editor apologizes to the authors. Not included in this translation is an English summary contained in the original report. To keep printing costs down, the original figures and tables, which fortunately had English titles, are used in this translation. This report is the first of a series of reports being prepared for the Norwegian Water Resources and Electricity Board. The second report for 1970 has been published with an English summary and contains an extension of the data contained in the 1969 report. Because this work deals with problems very similar to those in Alaska, it was decided to translate the first report and circulate a limited number of copies to workers in the U. S. and Canada. Research very similar to the Norwegian work was initiated in Alaska under the editor's direction in cooperation with the U. S. Geological Survey. -- G. L. Guymon.
    • A Study of the Freezing Cycle in an Alaskan Stream : A Completion Report

      Benson, Carl S. (University of Alaska, Institute of Water Resources, 1973-03)
    • The Limnology of Two Dissimilar Subarctic Streams and Implications of Resource Development

      LaPerriere, Jacqueline D.; Nyquist, David (University of Alaska, Institute of Water Resources, 1973-03)
      Because of the relatively undeveloped condition of arctic and subarctic Alaska, an opportunity is presented to draw up water quality management plans before extensive perturbation. These plans cannot, unfortunately , be based upon those drawn up for more temperate regions where much is known about natural stream conditions, for in these Alaskan areas, little is known about the natural physical, chemical, and biological cycles of streams or about their ability to handle the stresses that will be exerted on them should development take place. The Chena River, in subarctic, interior Alaska, near the city of Fairbanks, has been studied to evaluate the impact of pending construction and operation of flood control structures (Frey, Mueller and Berry, 1970). This river however has already been developed, especially along its lower reaches where the city of Fairbanks is situated. The watersheds of the two streams chosen for this study roughly parallel each other, although the Chatanika River watershed is about twice as long as that of Goldstream Creek. In addition to the dissimilarity in size, these two streams also differ in regard to terrain, at least along the respective stretches that were studied. The Goldstream Creek study area runs through a bog and extensive muskeg. The Chatanika River, however, was for the most part sampled in the area of mountainous terrain. The intent of this study was to obtain comprehensive physical and chemical data, to survey the resident invertebrates, and to evaluate the assimilative capabilities of both streams.