• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Engineering
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Tests and analysis of geogrids as base-reinforcing materials

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Fu_X_1998.pdf
    Size:
    2.488Mb
    Format:
    PDF
    Download
    Author
    Fu, Xuemin
    Keyword
    Civil engineering
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/9526
    Abstract
    A quantitative assessment of geogrids as base reinforcing material in paved roads is clearly necessary when a design is needed and decisions are to be made as a consequence. Two full scale single wheel load tests were conducted to determine the performance of geogrids as base reinforcing materials in paved roads. These two full scale tests were set up with different base thicknesses, material properties, loading conditions and geogrids. Load, speed, and direction of a test cart were controlled with a computer. Although many types of instruments were installed, measurements of vertical deformation of the pavement surface proved to be the most useful. The Traffic Benefit Ratio (TBR), defined as the ratio of the life of a reinforced section to the life of a similar unreinforced section, was used as a primary design parameter. Comparisons between reinforced and unreinforced bases are presented. The parameters used for comparison were permanent vertical deformation, number of repetitions to failure, tire load, and thickness of base course. Test results showed that the maximum TBR for a Tensar BR2 geogrid was 10. This TBR was obtained at a design deformation of 1.0 inch with 2 inches of asphalt over 10 inches of base over a CBR 3 clay subgrade. TBR's for other conditions ranged between 1 and 10. A design reference chart is presented for using Tensar BR1 and BR2 Geogrids.
    Description
    Dissertation (Ph.D.) University of Alaska Fairbanks, 1998
    Date
    1998
    Type
    Dissertation
    Collections
    Engineering

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2023 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.