• Impact Of Freeze -Thaw On Liquefaction Potential And Dynamic Properties Of Mabel Creek Silt

      Zhang, Yu (2009)
      In the early winter of 2002 (November), the Alaska Denali earthquake (Mw=-7.9) caused significant damage in partially frozen fine-grained soil and extensive liquefaction was observed in glacial fine-grained saturated soil surface deposits near Tok, Alaska. It illustrated that there was a need to evaluate the seismic response and liquefaction potential of fine-grain soil in cold regions; however, until now most of the research on the liquefaction phenomenon and seismic response were mainly about soil in non-cold regions. The seismic response and liquefaction potential of soils in cold regions, especially those of fine-grained nature, has not been studied thoroughly and therefore is not well-understood. This document presents a laboratory study on liquefaction potential and cyclic response of fine-grained soil in cold regions. As the main features of the soil in the ground of cold regions, temperature change at below freezing temperatures or near-freezing temperatures, and the seasonal climate change were evaluated on liquefaction potential, dynamic properties, and post-cyclic-loading settlement of fine-grained soils. Increasing temperatures from near freezing to the completely thawed temperature (i.e., 24�C, 5�C, 1�C, and 0.5�C) were used to thaw the frozen Mabel Creek silt to simulate temperature change on it, or the Mabel Creek silt experienced several freezing and thawing alternating processes (i.e., 1, 2, and 4 freeze-thaw cycles) to simulate seasonal climate change. Triaxial strain-controlled cyclic tests were conducted to evaluate liquefaction potential, dynamic properties, and post-cyclic-loading settlement. Based on this limited laboratory effort, results show that in most cases, temperature rise and freeze-thaw cycles can impact: (a) liquefaction potential, (b) dynamic properties and (c) post-cyclic-loading settlement of fine-grained soils. However, there was one case exception and this is decribed in the following sentence. When a fine-grained soil was conditioned in a partially frozen state, the possibility and threat of liquefaction significantly increased.
    • Biodegradation Of Petroleum And Alternative Fuel Hydrocarbons In Moderate To Cold Climate

      Horel, Agota Anna (2009)
      Microbial degradation of hydrocarbon fuels contaminating soil in the Arctic and subarctic environment is a relatively slow process. Nevertheless, due to transportation and logistical limitations in rural Alaska, biodegradation might be the best and cheapest contaminant removal option. The aim of this thesis was to investigate the environmental effects on biodegradation by naturally occurring microorganisms for some innovative hydrocarbon fuels and to determine the overall fate of hydrocarbons in soil, including degradation by fungi and bacteria, volatilization, and transport in the soil. Three major types of fuels were investigated in small scale microcosms and larger soil columns: conventional diesel as a control substance, synthetic diesel (arctic grade Syntroleum) and different types of fish oil based biodiesel. The environmental conditions investigated included different soil types (sand and gravel), different temperatures (constant 6�C, 20�C, and fluctuating between 6 and 20�C), moisture levels (from 2% to 12% GWC), fuel concentrations (from 500 to 20,000 mg fuel/kg soil) and nutrient dosages (0 or 300 mg N/kg soil). Microbial response times and growth phases were also investigated for different inoculum types. Conditions of 20�C, 300 mg N/kg soil, sand, ?4000 mg of fuel/kg soil and ?4% GWC were favorable for bioremediation, with a short lag phase lasting from one day to less than a week, and pronounced peaks of daily CO 2 production between week 2 and 3. At suboptimal conditions, all phases were extended and slow, however at low temperatures steady metabolization continued over a longer time. The relative importance of fungal and bacterial remediation varied between fuel types. Diesel fuel degradation was mainly due to bacterial activities while fish biodiesel degradation occurred largely by mycoremediation. For Syntroleum both bacterial and fungal remediation played key roles. Volatilization contributed up to 13% to overall contaminant removal. In soil columns, degradation was slower than in microcosms, due to an uneven concentration profile of contaminants, nutrients and oxygen with depth. In general, biodegradation showed promising results for soil remediation and the alternate fuel types were more biodegradable compared with conventional diesel fuel.
    • Seasonal Effects Of Frozen Soil On The Stiffness Of Bridge Piles

      Horazdovsky, Jacob E.; Hulsey, J. Leroy (2010)
      In the northern regions, the upper layer of soil is frozen throughout winter months. Soil stiffness can be expected to increase several orders of magnitude as it changes from thawed to frozen. Thus, pile foundation systems embedded in frozen soils are considerably stiffer during winter months when subjected to lateral loads. This thesis explores and quantifies stiffness change for 16 inch diameter steel jacketed, reinforced concrete pilings in seasonally frozen silt. Two test piles were driven 20 feet into silty soil at a site approximately 1.5 miles from Fairbanks, Alaska. Three quasi-static lateral load cyclic tests were conducted on the piles throughout the year; one in September when the soil was thawed, the other two in January and March with frost depths of 4.5 and 7.5 feet respectively. Soil temperatures ranged from thawed to -18 degrees C. The shear demand on the piles increased by over 400 percent. Depth to fixity changed from approximately 6 pile diameters (thawed) to less then 0.75 pile diameters (frozen).
    • Multi-Dimensional Frost Heave Modeling With Sp Porosity Growth Function

      Kim, Koui; Huang, Scott L. (2011)
      This dissertation presents a multi-dimensional frost-heave modeling with coupled heat transfer, moisture transfer, and mechanical analysis. A series of laboratory frost-heave tests was conducted to determine segregation potential (SP) values using the effect of cooling rate and overburden pressure in two different freezing modes. Regardless of the freezing mode, consistent SP values were obtained at the formation of the final ice lens. Continuous heave and water-intake measurements made it possible to determine the time at the formation of the final ice lens. The SP porosity growth function was developed using simulations of the growing ice lens and frozen fringe. The developed frost-heave model was verified by laboratory frost-heave tests in one dimension. The simulated temperature distribution and amount of heave were in good agreement with experimental values. The SP porosity growth function was then expanded to two dimensions to simulate the soil-pipeline interaction of an experimental buried chilled pipeline constructed in Fairbanks, Alaska in the early 2000s. A two-dimensional frost-heave simulation was conducted at the free-field area, where the influence of pipeline resistance in frozen ground was negligible. This model, which considers the effect of frozen soil creep on stress distribution due to temperature variation, analyzed the influence of stress fields on soil frost-heave susceptibility and deformation. Simulations of pipe displacement were conducted for two cases, with and without the use of the long-term creep characteristics of frozen soils. Using the long-term creep characteristics, the simulated result agreed well with the observed value, differing by only a few percentage points. However, without using long-term creep characteristics, the simulated pipe heave was approximately 75% of the observed heave because of an unrealistic stress buildup. Finally, the SP porosity growth function was expanded to predict soil-pipeline interaction around a frozen-unfrozen boundary. Temperature distribution was successfully predicted in both the pre-frozen soil and the unfrozen zones, as well as at the time when differential pipeline movement started. The developed three-dimensional frost-heave model could predict pipe movement and induced bending due to differential frost heave for a 20-year period.
    • The Hydrologic Regime At Sub-Arctic And Arctic Watersheds: Present And Projected

      Liljedahl, Anna K.; Hinzman, Larry (2011)
      The wetlands in the Arctic Coastal Plain, Northern Alaska, support a multitude of wildlife and natural resources that depend upon the abundance of water. Observations and climate model simulations show that surface air temperature over the Alaskan arctic coast has risen in recent history. Thus a growing need exists to assess how the hydrology of these arctic wetlands will respond to the warming climate. A synthesis study was conducted combining the analysis of an extensive field campaign, which includes direct measurements of all components of the water balance, with a physically-based hydrologic model forced by downscaled climate projections. Currently, these wetlands exist despite a desert-like annual precipitation and a negative net summer water balance. Although evapotranspiration is the major pathway of water loss, there are multiple non-linear controls that moderate the evapotranspiration rates. At the primary study site within the Barrow Environmental Observatory, shallow ponding of snowmelt water occurs for nearly a month at the vegetated drained thaw lake basin. Modeling studies revealed that the duration and depth of the ponding are only replicated faithfully if the rims of low-centered polygons are represented. Simple model experiments suggest that the polygon type (low- or high-centered) controls watershed-scale runoff, evapotranspiration, and near-surface soil moisture. High-centered polygons increase runoff, while reducing near-surface soil moisture and evapotranspiration. Soil drying was not projected by the end-of-the century but differential ground subsidence could potentially dominate the direct effects of climate warming resulting in a drying of the Arctic Coastal Plain wetlands. A drier surface would increase the susceptibility to fire, which currently is a major part of the Alaskan sub-arctic but not the arctic landscape. High quality pre- and postfire data were collected in the same location in central Seward Peninsula, uniquely documenting short-term soil warming and wettening following a severe tundra fire. Overall, this research concludes that arctic and sub-arctic watershed-scale hydrology is affected by changes in climate, surface cover, and microtopographic structures. It is therefore crucial to merge hydrology, permafrost, vegetation, and geomorphology models and measurements at the appropriate scales to further refine the response of the Arctic Coastal Plain wetlands to climate warming.
    • Attenuation of the herbicide glyphosate along railroad corridors in Alaska

      Ballou, Nellie B. (2011-05)
      Following the application of glyphosate in the formulation of AquaMaster® at two contrasting sub-arctic zones along the railroad corridor in Alaska, attenuation of the herbicide glyphosate was investigated. Study sites were established in continental and coastal zones. Glyphosate soil attenuation was similar to temperate regions during the growing season but exhibited an extended persistence during the winter months. Although glyphosate microbial degradation likely slowed during winter, both sites showed evidence of slight glyphosate degradation during the winter months. The coastal site attenuated more rapidly than the continental site which is presumably due to increased rainfall relative to the continental site. Glyphosate attenuation at the coastal site was likely driven by dispersion while microbial degradation was responsible for the attenuation of glyphosate at the continental site. Movement to subsurface soils (10-25 cm) at low concentrations was observed at both sites with slightly more transport at the coastal site than the continental site. Glyphosate transport to groundwater along railroad corridors was not conclusive. Vegetation cover reduction was reduced at the continental site but could not be determined at the coastal site.
    • Creep of grouted anchors in ice-rich silt

      Chen, Liangbiao (2011-05)
      Creep is a critical consideration for designing anchors in ice-rich silt. In this study, creep was evaluated for grouted anchors in ice-rich silt by laboratory tests. A total of nineteen staged-load pullout tests were conducted on smooth grouted anchors. The anchors were loaded until either a tertiary creep stage or the capacity of the load system was reached. Soil temperatures evaluated in this study ranged from 32 °F to 26.6 °F. It was found that the onset of tertiary creep for smooth anchors was around 0.03 inches, which was much smaller than that suggested in the literature for rough anchors (1.0 inch). Given the same shear stress and soil temperature, the observed creep displacement rates for smooth anchors were greater than those given by the existing design guidelines for rough anchors. A new creep model was proposed in which soil temperature was included as an additional variable. Model parameters were developed as a function of soil temperature and moisture contents by using the test data. The model predictions were compared with the laboratory tests. It was found that the creep displacement rates decreased with the decreasing of soil moisture contents and temperature. Based on the analysis of laboratory test data, design charts were provided to give the allowable pullout capacity for smooth anchors in ice-rich silt.
    • Characterizing the berthing load demand at Alaska Department of Transportation and Public Facilities Ferry Landings

      Hutchinson, Jonathan; Metzger, Andrew; Hulsey, Leroy; Dong, YongTao (2011-08)
      This report provides design guidelines and recommendations for side-berthing loads on ferry landing structures. Berthing loads on ferry berthing structures are not well understood due to a lack of information and research for ferry class vessels. The load criteria for the design of ferry berthing structures are thus often based on a number of assumptions, often leading to uneconomical or unreliable structures. The Alaska Department of Transportation (AKDOT&PF) recognizes the need for an improved information base on berthing loads from ferry class vessels, for the design and operation of future facilities within the Alaska Marine Highway System (AMHS). This study involves a one year empirical investigation into side-berthing loads at the Auke Bay ferry landing located in Juneau, Alaska. Measurements of fender displacement, approach velocity, and pile strain were used to determine berthing loads from scheduled berthings from four different vessels. Measured parameters were analyzed statistically, and used to establish distributions and design recommendations for berthing energy, force, velocity, and berthing coefficient based on reliability theory. This study provides an assessment of load criteria currently used by the AK DOT&PF Marine Department, as well as design load recommendations for both service and ultimate side-berthing loads from ferry class vessels.
    • Stabilization of marginal soils using geofibers and nontraditional additives

      Collins, Rodney Wotherspoon (2011-08)
      Western Alaska lacks gravel suitable for construction of roads and airports. As a result, gravel is imported, at a cost of between $200 and $600 per cubic yard, to fill transportation construction needs. In an effort to reduce these costs, the Alaska University Transportation Center (AUTO) began searching for methods to use local materials in lieu of imported gravel. The approach discussed in this thesis uses geofibers and chemical additives to achieve soil stabilization. Geofibers and chemical additives are commercially available products. The goal of the research presented in this thesis is to test the impact of addition of two geofiber types, six chemical additives, and combinations of geofibers with chemical additives on a wide variety of soil types. California Bearing Ratio (CBR) testing was used to measure the effectiveness of the treatments. Soils ranging from poorly graded sand (SP) to low plasticity silt (ML) were all effectively stabilized using geofibers, chemical additives, or a combination of the two. Through the research conducted a new method of soil stabilization was developed which makes use of curing accelerators in combination with chemical additives. This method produced CBR values above 300 for poorly graded sand after a seven day cure.
    • Hydrodynamics of downstream pointed guidevanes: a case study of the Hess Creek meander bend realignment

      Lai, Alexandre W. (2011-12)
      The hydrodynamics of downstream pointed guidevanes installed to realign an eroding meander bend upstream of the Trans- Alaska Pipeline bridge is studied. The bridge is located at Hess Creek, 137 km north of Fairbanks, Alaska. Effect of the downstream pointed vanes on bed form, erosion, longitudinal and transverse slopes, three dimensional velocity profiles, flow patterns, and other hydraulic parameters for high and low flows are compared and analyzed. Six years after installation of the vanes the realigned thalweg remains in its original design location. The longitudinal bed profile changed from a dominant continuous pool typical of natural meander bends on gravel stream beds to a series of pool riffles. However, there is minimal change in maximum scour depth between post and pre installation of the vanes. Secondary or transverse current patterns which cause scour or erosion on the outer bank are severely disrupted due to interference caused by the vanes. There is a consistent weak counter current in reaches between the vane stems due to flow separation caused by expansion of flow area. This condition was more dominant during low flows when the vanes were not completely submerged. From the tip of the vanes to the inner bank a more dominant transverse and streamwise current was measured. Location of the original eroding outer bank remains unchanged since installation of the vanes. This indicates that the vanes have to this point effectively realigned the meander bend and arrested additional lateral movement of the meander.
    • Detecting Methane Ebullition In Winter From Alaskan Lakes Using Synthetic Aperture Radar Remote Sensing

      Engram, Melanie J.; Walter, Katey (2012)
      Methane (CH4) is a greenhouse gas with a high radiative forcing attribute, yet large uncertainties remain in constraining atmospheric CH4 sources and sinks. While freshwater lakes are known atmospheric CH4 sources, flux through ebullition (bubbling) is difficult to quantify in situ due to uneven spatial distribution and temporally irregular gas eruptions. This heterogeneous distribution of CH4 ebullition also creates error when scaling up field measurements for flux estimations. This thesis reviews estimates of CH4 contribution to the atmosphere by freshwater lakes presented in current literature and identifies knowledge gaps and the logistical difficulties in sampling CH 4 flux via ebullition (bubbling). My research investigates various imaging parameters of space-borne synthetic aperture radar (SAR) to constrain current CH4 emissions from northern lakes. In a GIS spatial analysis of lakes on the northern Seward Peninsula, Alaska, comparing field data of ebullition to SAR, I found that SAR L-band backscatter from lake ice was high from lakes with CH4 bubbles trapped by lake ice and low from lakes with low ebullition activity. The 'roughness' component of a Pauli polarimetric decomposition of quad-pol SAR showed a significant correlation with the percentage of lake ice area containing CH4 bubbles and with CH4 ebullition flux. This indicates that the mechanism of SAR scattering from ebullition bubbles trapped by lake ice is single bounce. I conclude that SAR remote sensing could improve our ability to quantify lake ebullition at larger spatial scales than field measurements alone, could offer between-lake comparison of CH 4 ebullition activity, and is a potential tool for developing regional estimations of lake-source CH4.
    • Permafrost Settlement Caused By Climate Warming In Alaska And The Estimation Of Its Damage Costs For Public Infrastructure

      Hong, Eunkyoung; Trainor, Sarah; Colt, Stephen; Perkins, Robert; Walsh, John (2012)
      Climate models and studies indicate that the changes in the northern latitudes will be serious and accelerated. Climate warming may impact structures in the northern latitudes through permafrost settlement affecting the performance of infrastructure and increasing costs for maintenance. The material presented is organized in three main chapters. Chapter 1 describes the motivation for the research. Chapter 2 addresses the permafrost settlement hazard in Alaska. I developed the Permafrost Settlement Hazard Index, which considered anticipated climate warming and ecological characteristics which regulate permafrost settlement. I found that the discontinuous permafrost region is at more risk due to permafrost settlement than other regions of Alaska. I also found that the correlation that the areas with high settlement hazard value have higher road maintenance costs. Chapter 3 is an estimate of damage cost caused by permafrost settlement related to climate warming in the field of public infrastructure. I concluded that climate warming may add about $106 million annually from 2010 to 2050 to annual costs for public infrastructure in Alaska. This amount of damage cost is the relative size of damage cost that is caused by climate warming. In order to understand the broader idea of adaptation methods, a case study of Alaska roads for discontinuous permafrost regions is presented in Chapter 4. Some alternative construction methods were chosen as adaptation methods. Then, the comparison of the cost effectiveness of each adaptation method was shown to identify the most economical option when the cost estimation includes the effect of the additional permafrost settlement caused by climate warming. I concluded that pre-thaw method was the most cost effective method. I also recommended Air-Cooled Embankment on a condition that coarse rocks are available to create a convection cell. Chapter 5 summarizes the research and indicates possibilities for future research directions. I employed an interdisciplinary approach combining engineering knowledge with environmental impact assessments, utilizing economic tools in estimating damage costs, and analyzing the cost effectiveness of adaptation options to climate induced permafrost settlement. Nevertheless, this interdisciplinary analysis was not intended as a civil engineer design but intended for these economic estimates.
    • Winter Precipitation Depths Across The North Slope Of Alaska Simulated From The Weather Research And Forcasting Model And Snowtran-3D

      Byam, Sarah Jean; Cherry, Jessica E.; Toniolo, Horacio; Kane, Douglas (2012)
      Accurately predicting snow distribution and blowing snow conditions in the Arctic is critical to the design of ice road construction and maintenance as well as for predicting water supplies and runoff during snowmelt, estimating the cost of snow removal, and forecasting tundra travel conditions. A current atmospheric model used by both the operational weather prediction and research communities is the Weather Research and Forecasting model. However, the built-in snow schemes in the model neglect redistribution of snow via wind, one of the key processes in snow pack evolution. This study will involve three parts: (1) diagnostic of the differences in the current snow schemes of the model, (2) evaluation of the model's snow schemes as compared to observational data, and (3) asynchronous coupling of the SnowTran-3D to model predictions using a simple algorithm. The approach provides a simple method for the prediction of snow distribution, improving the realism of current snow distribution models, and will be easily employable for both operational and research applications.
    • Modeling Biosorption Of Cadmium, Zinc And Lead Onto Native And Immobilized Citrus Peels In Batch And Fixed Bed Reactors

      Chatterjee, Abhijit; Schiewer, Silke; Barnes, Dave; Johnson, Ron; Tainor, Tom (2012)
      Biosorption, i.e., the passive uptake of pollutants (heavy metals, dyes) from aqueous phase by biosorbents, obtained cheaply from natural sources or industrial/agricultural waste, can be a cost-effective alternative to conventional metal removal methods. Conventional methods such as chemical precipitation, membrane filtration or ion exchange are not suitable to treat large volumes of dilute discharge, such as mining effluent. This study is a continuation of previous research utilizing citrus peels for metal removal in batch reactors. Since fixed bed reactors feature better mass transfer and are typically used in water or waste water treatment using ion-exchange resins, this thesis focuses on packed bed columns. A number of fixed bed experiments were conducted by varying Cd inlet concentration (5-15 mg/L), bed height (24-75 cm) and flow rate (2-15.5 ml/min). Breakthrough and saturation uptake ranged between 14-29 mg/g and 42-45 mg/g respectively. An empty bed contact time of 10 minutes was required for optimum column operation. Breakthrough curves were described by mathematical models, whereby three popular models were shown to be mathematically identical. Citrus peels were immobilized within an alginate matrix to produce uniform granules with higher uptake capacity than raw peels. All breakthrough curves of native and immobilized peels were predicted using external and intra-particle mass transfer resistances from correlations and batch experiments, respectively. Several analogous mathematical models were identified; other frequently used models were shown to be the approximate derivatives of a single parent model. To determine the influence of competing metals, batch and fixed bed experiments were conducted in different binary combinations of Pb, Cd, Zn and Ca. Equilibrium data were analyzed by applying competitive, uncompetitive and partially competitive models. In column applications, high affinity Pb replaced previously bound Zn and Cd in Pb-Zn and Pb-Cd systems, respectively. However, the Cd-Zn system did not show any overshoot. Calcium, which is weakly bound, did not affect target metal binding as much as other metals. Saturated columns were desorbed with 0.1 N nitric acid to recover the metal, achieving concentration factors of 34-129. Finally, 5 g of citrus peels purified 5.40 L mining wastewater.
    • Structural health monitoring of Klehini River bridge

      Xiao, Feng (2012-08)
      The objective of the research is to improve the safety of bridge structures in the state of Alaska through implementation of innovative structural health monitoring (SHM) technologies. The idea is to evaluate structural integrity and serviceability, and to provide reliable information for changing structural response, etc. of monitored bridges. Based on the finite element model's moving load analysis, modal analysis results and field inspection, this study was used to establish a bridge SHM system for a particular bridge including a preferred sensor layout, system integrator and instrumentation suitable for Alaska's remote locations with harsh weather. A variety of sensors were proposed to measure and monitor structural and environmental conditions to assist in the evaluation of the performance of the Klehini River Bridge. This system is able to provide more reliable information on the real structural health condition. It can be used to improve safe performance of this bridge. As a new safety and management tool, this SHM system will complement traditional bridge inspection methods. Implementation of an effective monitoring system will likely result in a reduction in inspection manpower, early detection of deterioration/damage, development of optimum inspection cycle and repair schedules before deterioration/damage grows to a condition where major repairs are required.
    • Investigation of thermal regimes of lakes used for water supply and examination of drinking water system in Kotzebue, Alaska

      Bendlova, Tereza; Arp, Christopher D.; Duffy, Lawrence K.; Schnabel, William E.; Barnes, David L. (2012-08)
      Many villages in Arctic Alaska rely on lakes for water supply, such as the Alaskan City of Kotzebue, and these lakes may be sensitive to climate variability and change, particularly thermal regimes and corresponding effects on water quality. Thus, I initiated a study of water supply lakes in Kotzebue to collect data for developing a model to hindcast summer thermal regimes. Surface (Tws) and bed (Twb) temperature data collected from two water supply lakes and two control lakes from June 22nd-August 28th 2011 showed a similar pattern in relation to air temperature (Ta) and solar radiation with more frequent stratification in the deeper lakes. The average Tws for all lakes during this period was 14.5°C, which was 3.4°C higher than Ta for the same period. I modeled Tws from 1985 to 2010 using Ta, and theoretical clear-sky solar radiation (TCSR) to analyze interannual variability, trends, and provide a baseline dataset. Similar to patterns in Ta for this period, I found no trend in mean Tws for the main lake used for water supply (Devil's Lake), but considerable variation ranging from 12.2°C in 2000 to 19.2°C in 2004. My analysis suggests that 44% of years during this 25 year period maximum daily Tws surpassed 20°C for at least one day. This hindcasted dataset can provide water supply managers in Kotzebue and other Arctic villages with a record of past conditions and a model for how lakes may respond to future climate change and variability that could impact water quality.
    • Evaluating dust palliative performance and longevity using the UAF-DUSTM

      Eckhoff, Travis Warren; Milne, Clark (2012-12)
      Fugitive dust emissions from gravel surfaces such as unpaved roads and airport runways are a major source of particulate matter pollution in the environment. Fugitive dust emissions impact community health, decrease visibility and contribute to surface degradation. Chemical additives, also known as dust palliatives, are often used to reduce these dust emissions. Although these products have been widely used, little is known about their effectiveness and longevity. There is currently no standard test method to quantify the reduction in fugitive dust emissions provided by dust palliatives. The UAF-DUSTM was developed to provide a consistent test method for determining the effectiveness and longevity of dust palliative applications. Dust palliatives applications throughout Alaska were monitored for several years. The results show that dust palliatives can significantly reduce particulate matter emissions and be effective for several years.
    • The impact of a fluctuating freezing front on ice formation in freezing soil

      Dillon, Matthew Ryan (2012-12)
      Frost heave is typically associated with the formation of segregation ice in fine-grained soil. Coarse-grained soil is generally considered to be non-frost susceptible. Field observa-tions and laboratory experiments show that coarse-grained soil can be extremely ice-rich in specific conditions. Previous studies have shown that oscillation of the frozen-unfrozen boundary can lead to the formation of ice by a mechanism different from the segregation ice mechanism. Conditions related to the formation of ice in coarse-grained soil were in-vestigated using modern laboratory techniques. Fourteen tests were conducted on five soil types. The thickness of soil subjected to freeze-thaw cycles was varied and controlled by the magnitude and duration of applied soil temperatures. The thickness of the ice formed increased when the sample drainage was limited or prevented during cooling. Under spe-cific conditions, the formation of a discrete ice layer was observed in coarse-grained soils. Seven samples were scanned with the pCT scanner at the completion of the warming and cooling tests. The sub-samples scanned were analyzed in 2D cross-sections, and charac-terized as 3D reconstructions. Frost heave induced by the formation of ice was observed in both fine- and coarse-grained soils, including soils that were found to be traditionally non-frost susceptible.
    • Characterizing the berthing load environment of the Seattle ferry teminal, Bremerton slip

      Kwiatkowski, Jason E. (2012-12)
      This manuscript characterizes and presents design recommendations for berthing demands on ferry landing structures. There is a lack of research focused on the berthing load demand imparted by ferry class vessels, therefore the load criteria used for design is often based on a number of assumptions. This study involved a one-year field study of the structural load environment of wingwalls at the Bremerton Slip of the Seattle Ferry Terminal, located in Elliott Bay adjacent to Seattle, Washington. Measurements of marine fender displacement, vessel approach distance with respect to time, and. pile strain were used to determine berthing demands. Berthing event parameters were characterized using the Python programming language, compiled, and analyzed statistically. Probability theory was used to provide design value recommendations for berthing energy, force, approach velocity, berthing factor, and berthing coefficient. This study presents a number of engineering design aids intended to quantify the berthing load environment of wingwalls in the Washington State Ferry System.
    • Initial Permafrost Engineering Research In Alaska

      Cysewski, Margaret Hope; Shur, Yuri (2013)
      Past permafrost engineering research and projects can aid modern permafrost engineering. The knowledge base of lessons learned among engineers is important, especially between generations of engineers, so history does not repeat itself Uncovering the history of permafrost engineering, and its compilation, summarization, and analysis, is beneficial for the Alaskan engineering community. This master's thesis is devoted to the early years of permafrost engineering in Alaska with projects carried out from the Gold Rush era to shortly after WWII. The projects include: thawing technology developed by gold miners, Alaska Highway road design and construction with its influence, and early comprehensive research by the Permafrost Division of the U.S. Army Corps of Engineers' St. Paul District, particularly the development of the test site, the Fairbanks Research Area, along Farmers Loop Road. Each of these projects has been successfully adapted to modern practices, laying the foundation of permafrost engineering.