• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Older Theses Not Clearly Affiliated with a Current College
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Older Theses Not Clearly Affiliated with a Current College
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Subsurface structure of the volcanoes in Katmai National Park, Alaska

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Jolly_A_2000.pdf
    Size:
    4.523Mb
    Format:
    PDF
    Download
    Author
    Jolly, Arthur D.
    Chair
    McNutt, Steve
    Committee
    Wyss, Max
    Eichelberger, John
    Stone, David
    Keyword
    Geophysics
    Geology
    Geotechnology
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/9532
    Abstract
    The three-dimensional velocity, attenuation and b-value structure is mapped beneath the Katmai group volcanoes, located in south-central Alaska. Data for these studies include 4320 earthquakes recorded in the period July 26, 1995 to November 30, 1999 on a 5--18 station short-period seismograph array. The velocity structure is determined by inversion of P-wave travel-times for 8041 rays from 815 earthquakes. The inversion revealed the lowest velocities (3.6--5.0 km/s) centered beneath Novarupta, Trident and Mageik volcanoes between the surface and 4 km below sea level and moderately lower velocities at 0--6 km depth between Martin volcano and Katmai caldera (4.5--6.0 km/s). Higher relative velocities (5.0--6.5 km/s) prevail outboard of the volcanic axis and at Griggs volcano. The attenuation structure is determined by inversion of the amplitude spectra roll off to obtain t* for 1301 rays from 230 earthquakes in the magnitude range (0.8 < ML < 1.8). The inversion, which is well constrained in the depth range 0--6 km, reveals higher attenuation along the volcanic axis 1/Q = 0.008-0.018 (55 < Q < 125) and lower attenuation in non-volcanic regions of the study area 1/Q = 0.01--0.000 (100 < Q < infinity). The attenuation is greatest beneath Mageik, Trident and Novarupta (1/Q = 0.018; Q = 55) between the surface and 6 km below sea level. Frequency-magnitude distributions are determined by mapping b-values for ~1300 earthquakes larger than the magnitude of completeness (0.7 ML). The analysis reveals high b -values at Mageik volcano (1.2--2.2), intermediate b-values at Martin (1.0--1.6) and Katmai caldera (1.2--1.4) and low b-values at Trident (0.6--1.2). Results point to the existence of a large region of partially molten rock centered beneath Mageik, Novarupta and Trident volcanoes at 0--4 km depth. The localized nature of the high b-value zone at Mageik volcano suggests that the magma is discontinuous, occurring as several distinct bodies. The deeper high attenuation anomaly might mark the now solidified but highly fractured plumbing system associated with the 1912 Novarupta eruption.
    Description
    Dissertation (Ph.D.) University of Alaska Fairbanks, 2000
    Date
    2000
    Type
    Dissertation
    Collections
    Older Theses Not Clearly Affiliated with a Current College
    Theses (Unassigned)

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska is an affirmative action/equal opportunity employer, educational institution and provider and prohibits illegal discrimination against any individual.

    Learn more about UA’s notice of nondiscrimination.

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.