• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Older Theses Not Clearly Affiliated with a Current College
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Older Theses Not Clearly Affiliated with a Current College
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Single and multiple electromagnetic scattering by size -shape distributions of small nonspherical particles

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Schulz_F_1998.pdf
    Size:
    3.780Mb
    Format:
    PDF
    Download
    Author
    Schulz, Frank Michael
    Keyword
    Optics
    Nuclear physics and radiation
    Physics, Atmospheric Science
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/9548
    Abstract
    A comprehensive model for light scattering by size-shape distributions of randomly oriented nonspherical particles is developed. The model uses spheroids as model particles. The vector Helmholtz equation is solved with a new separation of variables (SVM) approach that allows one to calculate the ensemble-averaged single scattering optical properties of ensembles of randomly oriented particles analytically. Since the use of the SVM in spheroidal coordinates properly accounts for the geometry of the particles, the method is applicable to a large range of shapes ranging from elongated prolate needles via spheres to flat oblate disks. The relation between geometric symmetries of particles and symmetry relations of the electromagnetic scattering solution is investigated systematically in the general framework of the theory of point groups. The results are exploited in the model for increasing the computational efficiency. A comprehensive vector radiative transfer model is in part developed in this work. This radiative transfer model takes the output of the single scattering model as input and computes the Stokes vector components in a vertically inhomogeneous, plane parallel medium as a function of polar and azimuth angle and as a function of optical depth. The single scattering model is applied to investigate the impact of particle shape on the optical properties of size-shape distributions of randomly oriented particles, such as aerosol layers or ice clouds in the atmosphere. The optical properties are found to be much more sensitive to a variation in the effective aspect ratio than to a variation in the effective variance of a shape-distribution. The results of this study are used as input to the vector radiative transfer model in order to study the shape-sensitivity of the radiation field in a macroscopic medium containing a size-shape distribution of randomly oriented particles. It is found that both the radiance, and the degree of linear polarization, and the degree of circular polarization are strongly shape-sensitive in most viewing directions.
    Description
    Dissertation (Ph.D.) University of Alaska Fairbanks, 1998
    Date
    1998
    Type
    Dissertation
    Collections
    Older Theses Not Clearly Affiliated with a Current College
    Theses (Unassigned)

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska is an affirmative action/equal opportunity employer, educational institution and provider and prohibits illegal discrimination against any individual.

    Learn more about UA’s notice of nondiscrimination.

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.