• Implications of pore-scale distribution of frozen water for the production of hydrocarbon reservoirs located in permafrost

      Venepalli, Kiran Kumar (2011-08)
      Frozen reservoirs are unique with the extra element of ice residing in them along with the conventional components of a reservoir. The sub-zero temperatures of these reservoirs make them complicated to explore. This study investigates reduction in relative permeability to oil with decrease in temperature and proposes a best-production technique for reservoirs occurring in sub zero conditions. Core flood experiments were performed on two clean Berea sandstone cores under permafrost conditions to determine the sensitivity of the relative permeability to oil (kro) over a temperature range of 23°C to -10°C and for connate water salinities ranging from 0 to 6467 ppm. Both cores showed maximum reduction in relative permeability to oil when saturated with deionized water; they showed minimum reduction when saturated with 6467 ppm of saline water. Theoretically, the radius of ice formed in the center of the pore can be determined using the Kozeny-Carman Equation by assuming the pores and pore throats as a cube with 'N' identical parallel pipes embedded in it. With obtained values of kro as input to the Kozeny-Carman Equation at -10°C, the radius of ice dropped from 0.145 [upsilon]rn to 0.069 [upsilon]rn when flooding, water salinity is increased to 6467 ppm. This analysis quantifies the reductions in relative permeability solely due to different formation salinities. Other parameters like fluid saturations and pore structure effects also are discussed. Fluids like deionized water, saline water, and antifreeze (a mixture of 60% ethylene or propylene glycol with 40% water) were tested to find the best flooding agent for frozen reservoirs. At 0°C, 9% greater recovery was observed with antifreeze than with saline water. Antifreeze showed 48% recovery even at -10°C, at which temperature the rest of the fluids failed to increase production.
    • Simulation and analysis of wellbore stability in permafrost formation with FLAC

      Wang, Kai; Patil, Shirish; Chen, Gang (2015-07)
      Permafrost underlies approximately 80% of Alaska. Permafrost's high sensitivity to temperature variations plays a significant role in the stability of wellbores drilled through permafrost formations. Wellbore instability may cause stuck pipes, lost circulation, and/or collapse of the wellbore, resulting in extra cost and time loss. In order to minimize the influence of the heat produced during drilling, a vertical well is the only choice to penetrate permafrost formation. Fast Lagrangian Analysis of Continua (FLAC) was used in this simulation to test the minimum wellbore pressure to maintain stability in a permafrost formation. Three layers were set in the simulation model: clay, silt, and sand. With the drilling fluid temperature set at 343K and a 267K initial formation temperature, four different thermal times, i.e. 1 week, 1 month, 1 year, and 5 years, were tested to determine the minimum stable pressure. Pore pressure of the formation has the strongest effect on this pressure. And in a short operation period, drilling fluid temperature will not influence the minimum mud pressure value significantly. A regression analysis was conducted on the simulation results, and the minimum wellbore stable pressure was found to be a function of pore pressure, cohesion, frictional angle, temperature difference, conductivity difference, thermal time, and wellbore radius. With the help of this function, engineers could calculate stable pressure for wells in arctic area before drilling based on drilling fluid temperature.
    • Thermal analysis on permafrost subsidence on the North Slope of Alaska

      Agrawal, Neha Dinesh; Patil, Shirish; Chen, Gang; Dandekar, Abhijit; Bray, Matthew (2015-11)
      One of the major problems associated with the oil fields on the North Slope of Alaska is thawing permafrost around producing oil wells. In these wells, the heat from the producing well fluid gradually thaws the permafrost. This thawing in turn destroys the bond between the permafrost and the casing and causes instability that results in permafrost subsidence which further causes subsidence of the soil surrounding the wellbore and, subjects the casing to high mechanical stresses. The above problem has been addressed by several engineers, and several preventive measures, such as controlling the subsidence by refrigeration or by insulation of the wellbore, have been analyzed. Understanding the thermal behavior of the permafrost is imperative to analyzing permafrost subsidence and providing preventative measures. The current project focuses on building a scaled-down axi-symmetric model in FLAC 7.0 that will help us understand the thermal behavior (i.e., the heat input to the permafrost interval due to hydrocarbon production) and temperature distributions that result in permafrost subsidence. The numerical analysis estimated the thaw influence of steam injection used for heavy oil recovery and its effect on the area around the wellbore for 10 years. The developed model was compared with Smith and Clegg (1971) axi-symmetric model and COMSOL model and correlations of thaw radius and wellbore temperatures were obtained for different types of soils. Heat transfer mitigation techniques were also attempted which are discussed in the report further.