• Data Submission Package for Manuscript 'Model-predicting Matschie's Tree Kangaroo in Papua New Guinea'

      Falk Huettmann et al. (30-Jul-20)
      These are the GIS data used for modeling Matschie's Tree Kangaroo (Huon Tree Kangaroo) in Papua New Guinea PNG; for details please see metadata. THe manuscript is currently in revision phase.
    • Red squirrel midden model prediction GIS data

      Robold, Richard; Huettmann, Falk (11/30/2019)
      This dataset features the best-available compilation about Red Squirrels (Tamiasciurus hudsonicus, taxonomic serial number 180168 ) GIS model predictions in a study area in Fairbanks,Alaska. This dataset starts in 20016 and ends in 2017. The data are referenced in time and in space (GPS) and it consist of GIS layers for the UAF campus trails, including LIDAR; the geographic projection is UTM 6N in meters. The dara are compiled from sightings and records by the first author. This dataset represents opportunistic as well as complete sightings for a study area at UAF campus. The actual squirrel data are compiled into an MS Excel sheet and all other data layers are in ESRI format: raster or shapefile Tthe size of the overall data package is app. 21 MB.
    • Ogotoruk Creek Botanical Investigations Cape Thompson, Alaska

      Viereck, L.A.; Johnson, R.E.; Melchior, H.R. (Department of Biological Sciences, University of Alaska, 1960-12)
      Botanical investigations of the Cape Thompson - Ogotoruk Creek region of northwest Alaska were initiated in May, 1959 by the University of Alaska under contract with the United States Atomic Energy Commission (Contract No. AT (04 -3 ) - 310). The first summer's field work was largely exploratory and descriptive in nature and included a species inventory of the vascular plants, mosses, and lichens; a qualitative description of the main vegetation types in Ogotoruk Valley; and a preliminary mapping of the vegetation types within the valley. The results of the first summer's field work and winter visits have been partially reported in two reports: Ogotoruk Valley Botanical Project, December, 1959 Report, and the Phase II Interim Pinal Report, Ogotoruk Valley Botanical Project, June, 1960. For brevity, these will be referred to as the December, 1959 Botanical Report, and the June, 1960 Botanical Report. Materials reported in these earlier reports will not be repeated in this December, 1960 report. Botanical investigations were continued during the summer and fall of 1960. The objectives of the 1960 field season were as follows: 1. To measure the frequency, cover, and synthetic features of the main vegetation types in Ogotoruk Valley. 2. To establish control vegetation plots in areas outside the potential blast and fallout area and to extend our understanding of the vegetation of the northwestern Alaska Coast. 3. To complete records of species occurrence in the area by continuing plant collections and identifications. 4. To revise and complete the vegetation map of the area. 5. To continue seed germination studies on certain species. 6. To commence palynological studies of bog and lacustrine sediments. 7. To initiate studies on some of the ecological problems in the Ogotoruk Valley area. a. to understand the relationship between permafrost, annual freezing-thawing cycles, and plant distribution. b. to understand the inter-relationships of the activities of the arctic ground squirrel and vegetation in the valley. Preliminary results of the 1960 field work and additional information from the 1959 season are included in this report.
    • Sediments of the Norris Glacier outwash area, upper Taku Inlet, southeastern Alaska

      Slatt, Roger M. (1967-05)
      An 8-square mile outwash fan, composed of gravelly sediment, extends from the terminus of Norris Glacier to the waters of upper Taku Inlet, Southeastern Alaska. Thirty-seven surface sediment samples from the tidal portion of the fan form the bulk of this study. The tidal flat is largely composed of very poorly sorted muddy sediment and relatively well sorted sand which, for the most part, overlie outwash gravel. Mixing of various modal size classes has produced a complex sediment distribution pattern as well as a complicated size-sorting relationship. The sand-size fraction of the sediments consists of feldspar, quartz, rock fragments, amphiboles, pyroxenes, micas and opaques; the clay-size fraction consists of micas, chlorite, montmorillonite, feldspar and amphibole. The sediments are the product of glacial abrasion in the Juneau Ice Field area. The sand and mud are derived largely from Norris and Taku Glacier detritus; their nature indicates valley glacier detritus may be fairly rapidly sorted when subjected to hydraulic action. Absence of quartz and presence of feldspar in the clay-size fraction may indicate the physical properties of these minerals control the size to which they can be reduced by valley-glacier abrasion.
    • Particle dynamics in the plasma sheet

      Wagner, John S. (1978-08)
      Trajectories of charged particles in the tail region of the earth's magnetosphere are studied using a model magnetic field. The particles form a thin sheet-like structure in the magnetotail called the plasma sheet. It is shown that most trajectories are categorized by two dimensionless parameters. One of them is equal to the ratio of the cross-tail electric force to the magnetic force in the midplane and determines the maximum particle energization. The other parameter is the ratio of the plasma sheet thickness to the particle gyroradius in the midplane and determines the degree to which the particle motion is adiabatic. All previous attempts at studying trajectories in the magnetotail are shown to be applicable only over limited ranges of the two parameters. Hence those studies are combined into a common framework, and those trajectories which have not been studied previously are added for completeness.
    • The geology of three extrusive bodies in central Alaska Range

      Albanese, Mary; Turner, Don; Swanson, Samuel; Gilbert, Wyatt; Kienle, Juergen; Stone, David (1980-05)
      The Buzzard Creek basalt, Jumbo Dome, and Sugar Loaf Mountain occur in the Central Alaska Range. The purpose of this study is to determine the age, nature, geothermal potential, and possible genetic relationships between these igneous bodies. The areas were investigated by mapping, radiometric dating, and petrologic studies. The Buzzard Creek basalt appears to have formed by a maar eruption about 3,000 years ago. Seismic evidence suggests this basalt may be related to current subduction in the area. Jumbo Dome consists of calc-alkaline andesite and is probably Pleistocene in age. Sugar Loaf Mountain is composed of Mid-Tertiary rhyolite. Geochemistry suggests that the Sugar Loaf Mountain rhyolite and Jumbo Dome andesite may also be subduction-related. Differences in age and geochemistry indicate there is no genetic relationship between the rocks of the three areas. The ages, type of volcanic features', and snow melt patterns suggest that these three areas have low geothermal potential.
    • Theoretical, experimental and numerical simulation study of a radially injected barium disk

      Sydora, Richard D. (1981-05)
      An Investigation of the dynamics and stability of a high-altitude radial barium plasma injection is performed using theoretical and numerical simulation methods. The barium plasma cloud, injection experiment was conducted on March 16, 1980 and produced several interesting phenomena: (1) Three distinct rings of barium containing irregularities exhibiting collective motion; (2) A region of plasma depletion at the location of injection; (3) A structure of approximately eighteen distinct barium ion rays emanating from the injection location. A collisionless, electrostatic particle simulation model is used to understand the behavior of the plasma, indicating that the initial plasma deformation develops due to an E x B azimuthal velocity shear instability. A theoretical model used for a stability analysis of the plasma is formulated based on the number density distributions of the electrons and ions obtained from the numerical simulation results. The linear stability analysis shows that the number of unstable azimuthal modes created by the velocity shear instability is dependent upon the amount of charge separation occurring in the expanding plasma.
    • Ion dynamics in auroral potential structures and formation of ion conic distribution

      Yang, Wei-hong (1981-12)
      This thesis is concerned with the problem of how the positive ions are energized by the two-dimensional potential structures along auroral field lines; these auroral potential structures are known to be responsible for accelerating electrons into the ionosphere to produce discrete auroras. A systematic numerical study of the test ion dynamics in auroral potential structures, either V-shaped or S-shaped, has been carried out. Transverse ion accelerations occur if the width of the auroral potential structure (Lx ≤ ρi). This result shows that the conic distribution of upstreaming ions observed on auroral field lines can be generated by the same potential structures which produce the thin auroral arcs (Lx ≤ ρi). This transverse acceleration mechanism operates more effectively on heavier ions, resulting in O+ ions more energetic than H+ ions as indicated by observations.
    • Deactivation and excitation of 0I(6s ⁵S) at above-thermal energies

      Enzweiler, Joseph A. (1982-05)
      Absolute collisional deactivation and excitation cross sections have been measured for a beam of O (⁵P-⁵S°) incident on N₂. The beam energy was varied from 3.95 to 10.65 keV. Cross sections for charge transfer (electron capture) of 0⁺ in N₂ were also measured in the energy range from 2.4 to 24.3 keV. The variation of light intensity 5436 Å (from the 6s-3p transition of the quintet system of atomic oxygen) emitted from the beam as a function of N₂ target pressure was fitted to a beam of kinetic equation to determine deactivation and excitation cross sections. The cross section for deactivation in N₂ decreases from 6.84 x 10⁻¹⁵ cm² at 3.95 keV to 1.5 x 10⁻¹⁵ cm² at 19.65 keV. The cross section for excitation decreases from 3.3 x 10⁻¹⁹ at 3.95 keV to 2.25 x 10⁻¹⁹ cm² at 19.65 keV.
    • An improved method of ice nucleus measurement

      Shih, Chi-Fan G. (1982-09)
      Ice nuclei, which initiate the ice nucleation process at a higher temperature than the homogeneous nucleation temperature, are essential for the initiation of the ice phase in clouds. Unfortunately, no standard method has been established for the measurement of ice nucleus concentration. The filter technique is a promising candidate if the tendency for ice nucleus concentrations to decreases as the volume sampled increases can be explained. For this study, an improved ventilation method for the development of exposed filters was developed and tested. The results were compared with results obtained in a static diffusion chamber. The volume effect was observed to be less with the new dynamic system. Further work needs to be done to find the optimum flow rate in order to reduce the vapor depletion problem to a minimum. The ratio of total counts of dynamic and static system appears to be a promising evaluation index.
    • Increases And Fluctuations In Thermal Activity At Mount Wrangell, Alaska (Volcano, Glacier)

      Motyka, Roman John (1983)
      The objectives of this study were to document and interpret changes in thermal activity at two of three craters located on the rim of the ice-filled summit caldera of Mount Wrangell, an active glacier-clad shield volcano in south-central Alaska. The technique of "glacier calorimetry" was developed, through which changes in the volume of glacier ice in the craters and caldera were measured and related to changes in heat flow. Chemical analyses of gases and acid-thermal waters provided information on the underlying heat source. In 1965, thermal activity began increasing at both the North and West Craters. During the ensuing years, heat flow increased significantly at the North Crater, although in a highly fluctuating manner, while gradually declining at the West Crater. Pulses in heat flow at the North Crater occurred in 1966-68 and 1972-74, with both pulses followed by a four-year decline in activity. Increases in heat flow began again in 1978-79 and have continued unabated through the summer of 1983. Over 80 percent of the 4.4 x 10('7)m('3) ice volume within the crater in 1966 was melted by 1982, and the meltwaters have drained or evaporated from the crater. The subsequent rapid development of numerous fumaroles, the large dry-gas proportion of SO(,2) (27 percent), and the inferred presence of gaseous HCl indicate that a shallow degassing magma body is the source of heat driving the thermal system. Seismically induced fracturing above the magma body is hypothesized to explain the initial increases in thermal activity. The resulting massive influx of meltwaters into the subsurface is suggested as the cause of the fluctuations in heat flow. The continued increase in activity since 1979 suggests that the volume of meltwater being generated is no longer sufficient to quench the heat source beneath the crater.