• Controls on microbial processing of dissolved organic matter in boreal forest streams

      Schmidt, Marie; Jones, Jay; Harms, Tamara; Guerard, Jennifer (2020-05)
      In the boreal forest, permafrost thaw is resulting in changes in vegetation and deepening of watershed flowpaths. Caribou-Poker Creeks Research Watershed contains sub-catchments underlain with varying permafrost extents (4-53% cover), providing the opportunity to study how permafrost extent affects water chemistry and nutrient cycling. I measured nitrogen (N), phosphorous (P), and carbon (C) processing ectoenzyme activity in the water column and sediment of headwater streams, and related ectoenzyme activity to nutrient and dissolved organic carbon (DOC) concentration. Additionally, I used nutrient diffusing substrata (NDS) to grow biofilms with enhanced inorganic N and P and labile C alone and in combination and measured ectoenzyme activity and respiration of biofilms in response to resource amendments. High P-processing enzyme activity across streams of the CPCRW indicated microbial P limitation. Respiration and organic matter processing enzymes of biofilms grown on NDS increased with labile C or labile C in combination with nutrient additions, implying that labile C limited or co-limited rates of DOM processing. Our results suggest that as climate warming and subsequent permafrost thaw alters terrestrial inputs of dissolved organic matter (DOM) and inorganic nutrients into streams, changes in inorganic P and labile C availability will control microbial processing of DOM.
    • Influence of permafrost extent on photochemical reactivity, functional group composition, and geochemical cycling of a subarctic discontinuous permafrost Alaskan watershed

      Gagné, Kristin R.; Guerard, Jennifer J.; Simpson, William; Trainor, Thomas P.; Jones, Jeremy (2020-05)
      Sub-Arctic Alaskan boreal forests are currently extremely susceptible to permafrost thaw caused by increases in atmospheric temperatures in the region. Upon thaw, permafrost soil organic matter can leach out organic matter, nitrogen, and metals. It is important to observe the effects the leaching of permafrost may have on photoreactivity, functional group composition, and metal introduction. Photoproduced reactive oxygen species may affect metal fate and transport through mechanisms such as the photo-Fenton reaction. Functional group analysis allows for differences in natural organic matter source and ability to complex metals throughout a watershed. Additionally, permafrost soils may have the ability to leach in metals through lateral flow of surface waters as observed in other studies. These metals could then complex to organic matter and alter the geochemical cycling within the watershed. Organic matter is a nutrient source, and metals (e.g., As) may increase the toxicity of surface waters through the thaw of permafrost. The influx of sequestered organic matter and metals to surface waters has the potential to drastically alter ecosystem processes. This study observes how permafrost leaching affects water composition, including its overall photoreactivity and functional group composition. The data obtained was then used to observe and deduce conclusions on how permafrost thaw influences surface water photoreactivity and functional group composition. Finally, trace metal analysis was conducted on a whole watershed scale over three years to observe how permafrost influences the geochemical composition of three main thermokarst surface waters with varying degrees of permafrost degradation. Overall, permafrost was determined to be heterogeneous and highly photoreactive both inter- and intra- watershed. Additionally, the functional group composition of surface waters influenced by permafrost thaw was different between summer and winter, indicating that winter is an important period to sample. Due to this change in functional group composition, the photoreactivity of winter samples was higher than summer with regard to the production of reactive oxygen species. Metal concentrations also increased during the winter for lakes identified to be undergoing active permafrost thaw. Finally, this case study found that metal concentration data combined with optical indices provided important information for resolving the possible extent of permafrost beneath thermokarst lakes.
    • Remote sensing and GIS analysis of the spatial and morphological changes of thermokarst lakes: Kolyma lowlands, northeast Siberia

      Tillapaugh, Meghan L. (2011-05)
      Thermokarst lakes develop when changes in the permafrost thermal regime cause degradation leading to surface subsidence and ponding. The degree of thermokarst development depends upon permafrost characteristics, topography, and geology. Changing thermokarst lake dynamics affect arctic ecosystems, hydrological patterns, albedo, and the carbon cycle through the mobilization of organic matter in the permafrost. This study used remote sensing and GIS techniques to relate lake dynamics in the Kolyma Lowlands, Siberia, to geology, elevation, geomorphological features, hydrology, and air temperature. Highest limnicity and largest lake sizes were found in regions with low elevation, limited alluvial processes, high ground-ice content, and lithologies with small particle sizes. New lake development and erosion occurred as well. One subregion studied showed lake area increases (Cherskii: +7.6%) while another showed a decrease (Duvanny Yar: -5.2%). Differences are attributed to variations in elevation and fluvial influences. A major cause of drainage was river tapping of lakes. Lake coalescence, flooding during river water level high stands, and lakeshore erosion were the main causes of lake expansion. The Kolyma Lowland soils have high ice and organic matter contents as well making the monitoring of thermokarst lake dynamics important as large amounts of freshwater and carbon could potentially be released.