• Jakobshavn Isbr�_: velocity variations from hourly to decadal time scales at Greenland's fastest tidewater glacier

      Podrasky, David Bryan; Truffer, Martin; Bueler, Edward; Hock, Regine; Larsen, Christopher; Motyka, Roman (2013-12)
      Outlet glaciers in Greenland, and elsewhere, have recently shown large variations in terminus position and ice flux. One example is the tidewater retreat of Jakobshavn Isbr�_, which began in the late 1990s with high thinning rates, acceleration and collapse of the floating glacier tongue. The retreat has continued to the present, with glacier speeds more than doubling in two decades' time. A campaign of in-situ measurements was initiated in 2006 with the aim of determining the importance of short-term forcing as a control on the continuing evolution of the glacier. Three years of continuous GPS measurements along the centerline of Jakobshavn Isbr�_ reveal seasonal velocity variations due to seasonally varying terminus position. The relationship between glacier speed and surface melt is complex, with both speed-up and slowdown events in response to variations in the rate of surface melt. During a particularly long and intense melt season in 2007, a series of melt-driven slowdowns effectively reduced the mean ice flow over the whole year. On shorter timescales, the response to surface meltwater input is more predictable with diurnal velocity variations of 1-2 % that closely match changes in meltwater input. The influence of iceberg calving and tidal forcing is restricted to the lower 10 km of the glacier, imposing an upper limit on longitudinal stress coupling length of a few ice thicknesses. The response to these forcings does not exceed 5 % of mean flow. This is consistent with a glacier operating under high driving stresses. Ice sheet velocities as far as 120 km inland of the margin have responded to the continuing retreat with increases in speed. The flow has also rotated toward the centerline of the main channel. This speedup and channelization of flow are the result of evolving ice surface gradients as the glacier continues to respond to changes initiated at the periphery. This shows that ocean driven changes have led to increased ice flux far inland on the Greenland Ice Sheet, implying a continuing large-scale evolution of the Jakobshavn Isbr�_ drainage basin.
    • Kaposi’s sarcoma-associated herpesvirus replication and transcription activator regulates extracellular matrix signal pathway

      Pfalmer, Daniel; Chen, Jiguo "Jack"; Ferrante, Andrea; Hueffer, Karsten (2016-08)
      Kaposi’s Sarcoma (KS) is a malignancy caused by infection with Kaposi’s Sarcoma-associated Herpesvirus [KSHV; also known as Human Herpesvirus 8 (HHV8)] in which tumor cells show a characteristic ‘spindle-like’ morphology. The transcription factor RTA (Replication and Transcription Activator) is the viral protein responsible for reactivating KSHV from its latent state. Production of RTA in latently infected cells causes a number of viral proteins to be produced and leads to a cascade of gene expression changes in both viral and host genes. Previous work in our lab showed that RTA was capable of reprogramming cells in vitro to display a spindle-like morphology. In this study we aimed to identify the host gene expression changes caused directly by RTA which could be responsible for that reprogramming. To that end, Madin-Darby Canine Kidney cells (MDCK cells) were chosen as a model for KSHV-naïve mammalian cells. Differences in host gene expression levels in a culture of MDCK cells transfected with a plasmid coding for expression of RTA compared to MDCK cells transfected with a similar plasmid lacking the RTA gene were measured by whole transcriptome sequencing (RNA-Seq). Cells containing the RTA-coding plasmid adopted a spindle-like morphology and showed at least a two-fold change in expression level in approximately 180 genes. Those 180 genes were then screened for known associations to signaling pathways in order to determine which might be involved with the morphological changes observed and/or biological significance. The expression levels of the 10 genes identified by that screening were then verified by quantitative real time PCR (qPCR). Of those 10 genes, eight were identified as potentially associated with the morphological changes, including three genes associated with extra cellular matrix (ECM) destruction (MMP9, CTSD, and CTSS) that were down-regulated; two genes associated with blocking ECM destruction (TIMP1 and TIMP2) that were pregulated; two ECM component genes (LAMC2 and COL1A2) that were upregulated; and one gene associated with blocking cell-cell and cell-ECM adhesion (MUC1) that was downregulated. The remaining two genes (MAP2K1 and podoplanin) were identified as potentially biologically significant, but not directly involved in regulating morphology. MAP2K1 is associated with epithelial dedifferentiation and was down-regulated; and the lymphatic endothelial specific marker podoplanin (PDPN) was up-regulated. Taken together, the differences in morphology and gene expression between RTA-producing cells and controls suggest a possible role for RTA in the formation of the spindle cells that characterize Kaposi’s sarcoma.
    • Kelvin-Helmholtz Instability And Magnetic Reconnection At The Earth's Magnetospheric Boundary

      Ma, Xuanye; Otto, Antonius; Lummerzheim, Dirk; Newman, David; Ng, Chung-Sang; Zhang, Hui (2012)
      Magnetic reconnection and Kelvin-Helmholtz (KH) instability are the two most important mechanisms for plasma transport across the Earth's magnetospheric boundary layer. Magnetic reconnection is considered as the dominant process for southward interplanetary magnetic field (IMF), and the KH instability is suggested to play an important role for northward IMF. It is interesting to note that this plasma entry is associated with a dramatic entropy increase, which indicates the existence of strong nonadiabatic heating during the entry process. Observations indicate a plasma entropy increase by two orders of magnitude during the transport from solar wind into the Earth's magnetosphere. Therefore, it is important to examine whether magnetic reconnection can provide sufficient nonadiabatic heating to explain the observed plasma properties and to identify plasma conditions that allow strong nonadiabatic heating. This thesis demonstrates that the entropy can indeed strongly increase during magnetic reconnection provided that the plasma beta, i.e., the ratio of thermal to magnetic energy density is small. A realistic three-dimensional configuration of the Earth's magnetopause for southward IMF conditions includes large anti-parallels magnetic components with a fast perpendicular shear flow. Thus, it is expected that KH modes and magnetic reconnection operate simultaneously and interact with each other. This thesis provides a systematic study on this interaction between reconnection and KH modes by means of three-dimensional MHD and Hall MHD numerical simulations. It is demonstrated that both reconnection and nonlinear KH waves change the other modes onset condition by changing the width of the transition layer. It is shown that dynamics of the system can be strongly modified by a guide field or Hall physics. In the presence of plasma flow, magnetic reconnection is also associated with the generation of field-aligned currents (FACs), which play a critical role in the coupling between the magnetosphere and ionosphere. This thesis also examines systematically the generation of FACs. It is demonstrated that such currents are generated either by a guide magnetic field, by shear flow, or by the inclusion of Hall physics already in two-dimensional magnetic reconnection.
    • King eider migration and seasonal interactions at the individual level

      Oppel, Steffen; Powell, Abby; Murphy, Edward; Verbyla, Dave; O'Brien, Diane (2008-12)
      Seasonal interactions describe how events during one season of the annual cycle of a migratory bird affect its fitness in subsequent seasons. Understanding the strength and mechanism of seasonal interactions is important to predict how migratory birds will respond to future challenges caused by habitat loss and climate change. This dissertation explores seasonal interactions between different stages of the annual cycle in an arctic-breeding sea duck, the King Eider (Somateria spectabilis). Concerns over recent population declines and potential effects of climate change on marine habitats used by the species highlight the need for a better understanding of its life history. I used satellite telemetry to describe migration routes, timing of migration events, and geographic regions used by King Eiders throughout the year. I found highly variable movement patterns, and wide dispersion of King Eiders to three regions in the Bering Sea during winter. I then developed stable isotope techniques to examine seasonal interactions at the individual level. First, I examined the relative contribution of body reserves to egg production using stable isotope analysis of egg components and blood. I found that most birds use only small proportions of body reserves to produce eggs, but rather rely on nutrients obtained on breeding grounds to form a clutch. Thus, contrary to general expectation, King Eiders use an income strategy to produce eggs, and I hypothesize that they may retain body reserves for incubation. Body reserves may reflect the residual body condition from the previous winter. I further examined whether females wintering in different regions in the Bering Sea had different rates of nest survival. The northern Bering Sea has a higher benthic biomass and is closer to breeding grounds than winter regions farther south. However, nest survival rates of female King Eiders in northern Alaska did not differ between females that had wintered in the northern or southern Bering Sea. Overall, I found large individual variation in movement and breeding strategies, and little evidence for strong seasonal interactions between winter, spring, and summer. This indicates that King Eiders are a very adaptable species that depend on resources acquired on breeding grounds to a larger extent than previously assumed.
    • King eider wing molt: inferences from stable isotope analyses

      Knoche, Michael J. (2004-12)
      The western North American population of the king eider is thought to have declined by over 50% between 1974 and 1996 without an apparent cause. The non-breeding period of king eiders consists of 80-100% of their annual cycle if not impossible by observation. I used stable carbon and nitrogen isotope values of feathers and muscle to examine the wing molt and migration ecology of king eiders in 2003. Eider primary feathers were isotopically homogenous along the length of the feather, implying invariable diets during wing molt. Captive eiders in their hatch-year did not fractionate nitrogen isotopes, potentially indicating preferential protein allocation associated with growth. Six percent of female eiders sampled molted primary feathers on their breeding grounds, which had not been previously substantiated. Tissue samples from both genders corroborated dietary shifts inherent in switching from a marine to terrestrial diet. Carbon isotopes of feathers from satellite-transmittered males were correlated with longitude of their known wing molt locations indicating that the gradient of carbon isotopes can be used to draw inferences about molt location of eiders.
    • Lake Area Change In Alaskan National Wildlife Refuges: Magnitude, Mechanisms, And Heterogeneity

      Roach, Jennifer; Griffith, Brad; Harden, Jennifer; Verbyla, David; Jones, Jeremy (2011)
      The objective of this dissertation was to estimate the magnitude and mechanisms of lake area change in Alaskan National Wildlife Refuges. An efficient and objective approach to classifying lake area from Landsat imagery was developed, tested, and used to estimate lake area trends at multiple spatial and temporal scales for ~23,000 lakes in ten study areas. Seven study areas had long-term declines in lake area and five study areas had recent declines. The mean rate of change across study areas was -1.07% per year for the long-term records and -0.80% per year for the recent records. The presence of net declines in lake area suggests that, while there was substantial among-lake heterogeneity in trends at scales of 3-22 km a dynamic equilibrium in lake area may not be present. Net declines in lake area are consistent with increases in length of the unfrozen season, evapotranspiration, and vegetation expansion. A field comparison of paired decreasing and non-decreasing lakes identified terrestrialization (i.e., expansion of floating mats into open water with a potential trajectory towards peatland development) as the mechanism for lake area reduction in shallow lakes and thermokarst as the mechanism for non-decreasing lake area in deeper lakes. Consistent with this, study areas with non-decreasing trends tended to be associated with fine-grained soils that tend to be more susceptible to thermokarst due to their higher ice content and a larger percentage of lakes in zones with thermokarst features compared to study areas with decreasing trends. Study areas with decreasing trends tended to have a larger percentage of lakes in herbaceous wetlands and a smaller mean lake size which may be indicative of shallower lakes and enhanced susceptibility to terrestrialization. Terrestrialization and thermokarst may have been enhanced by recent warming which has both accelerated permafrost thawing and lengthened the unfrozen season. Future research should characterize the relative habitat qualities of decreasing, increasing, and stable lakes for fish and wildlife populations and the ability of the fine-scale heterogeneity in individual lake trends to provide broad-scale system resiliency. Future work should also clarify the effects of terrestrialization on the global carbon balance and radiative forcing.
    • Land cover change on the Seward Peninsula: the use of remote sensing to evaluate the potential influences of climate change on historical vegetation dynamics

      Silapaswan, Cherie Sumitra (2000-12)
      Vegetation on the Seward Peninsula, Alaska, which is characterized by transitions from tundra to boreal forest, may be sensitive to the influences of climate change on disturbance and species composition. To determine the ability to detect decadal-scale structural changes in vegetation, Change Vector Analysis (CVA) techniques were evaluated for Landsat TM imagery of the Seward Peninsula. Scenes were geographically corrected to sub-pixel accuracy and then radiometrically rectified. The CVA results suggest that shrubbiness is increasing on the Seward Peninsula. The CVA detected vegetation change on more than 50% of the burned region on TM imagery for up to nine years following fire. The use of both CVA and unsupervised classification together provided a more powerful interpretation of change than either method alone. This study indicates that CVA may be a valuable tool for the detection of land-cover change in transitional regions between tundra and boreal forest.
    • Landfast sea ice formation and deformation near Barrow, Alaska: variability and implications for ice stability

      Jones, Joshua M.; Hajo, Eicken; Shapiro, Lewis; Hutchings, Jennifer; Weingartner, Thomas (2013-12)
      Climate change in the Arctic is having large and far-reaching effects. Sea ice is declining in annual extent and thinning with a warming of the atmosphere and the ocean. As a result, sea ice dynamic behaviour and processes are undergoing major changes, interacting with socio-economic changes underway in the Arctic. Near Barrow, Alaska, landfast sea ice is an integral part of native lñupiaq culture and impacts the natural resource extraction and maritime industries. Events known as breakouts of the landfast ice, in which stable landfast ice becomes mobile and detaches from the coast, have been occurring more frequently in recent years in northern Alaska. The current study investigates processes contributing to breakout events near Barrow, and environmental conditions related to the detachment of landfast sea ice from the coast. In this study, synoptic scale sea level pressure patterns are classified in an attempt to identify atmospheric preconditioning and drivers of breakout events. An unsupervised classification approach, so called Self-Organizing Maps, is employed to sort daily sea level pressure distributions across the study area into commonly observed patterns. The results did not point to any particular distributions which favored the occurrence of breakouts. Because of the comparatively small number of breakout events tracked at Barrow to date (nine events between 2006 and 2010), continued data collection may still yield data that support a relationship between breakout events and large scale sea level pressure distributions. Two case studies for breakout events in the 2008/09 and 2009/10 ice seasons help identify contributing and controlling factors for shorefast ice fragmentation and detachment. Observational data, primarily from components of the Barrow Sea Ice Observatory, are used to quantify stresses acting upon the landfast ice. The stability of the landfast ice cover is estimated through the calculation of the extent of grounded pressure ridges, which are stabilizing features of landfast ice. Using idealized ridge geometries and convergence derived from velocity fields obtained by coastal radar, effective grounding depths can be calculated. Processes acting to destabilize or precondition the ice cover are also observed. For a medium-severity breakout that occurred on March 24, 2010, the calculated atmospheric and oceanic stresses on the landfast ice overcame the estimated grounding strength of ridge keels, although interaction with rapidly moving pack ice cannot be ruled out as the primary breakout cause. For another medium-severity breakout that took place on February 27, 2009, the landfast ice was preconditioned by reducing the draft of grounded ridge keels, with subsequent detachment from the shore during the next period of oceanic and atmospheric conditions favoring a breakout. For both of these breakouts, in addition to their potential role in destabilizing the landfast ice by overcoming the ridge grounding strength, current and/or wind forcing on the landfast ice were found to be important factors in moving the stationary ice away from shore.
    • Landscape sensitivity to climate change in northern Alaska: lessons from the past

      Gaglioti, Benjamin V.; Mann, Daniel H.; Wooller, Matthew J.; Arp, Christopher D.; Jones, Miriam C.; Jones, Jeremy B.; Swanson, David K. (2016-05)
      The climate is now changing rapidly at high-latitudes, and observing how the Arctic and sub-Arctic environment responded to prehistoric climate changes can hold valuable lessons as we adapt in the future. This dissertation presents four studies that use biogeochemical proxies to reconstruct environmental changes in northern Alaska over the last 40,000 years (40 ka). These records are used to infer how the environment responded to climate changes at different locations and over varying spatial and temporal scales. The first study presents a time series of stable oxygen isotopes contained in radiocarbon-dated (¹⁴C) willow wood to quantify the nature and rates of climate change on the North Slope of Alaska over the last 40 ka. The second study examines how past temperature fluctuations affected permafrost thaw and the release of ancient carbon over the last 14.5 ka by compiling ¹⁴C-age offsets in the sediment of a small lake in the Brooks Range foothills. In the third study, I document human-caused changes to boreal wildfire frequency near the city of Fairbanks to test whether the primeval forest type and permafrost in the surrounding watershed will be vulnerable to more frequent fires in the future. The fourth study examines how ice age (40-9 ka) climate changes impacted the activity of sand dunes, vegetation productivity, and the dynamics of permafrost recorded in a unique sedimentary exposure located near the Arctic Coastal Plain on Alaska’s North Slope. Overall, I present several new and interesting approaches and findings stemming from this work. Ancient willow isotopes show that between 17 and 8 ka, during the time when ice sheets were in retreat worldwide, temperatures fluctuated widely on the North Slope mostly in concert with those in Greenland. Most notably, rapid changes in temperature and moisture occurred during the initial deglacial warming (ca. 16 ka), and during the Younger Dryas cold period (12.9-11.7 ka). These climate trends were amplified on the North Slope by changes in sea-ice extent in adjacent seas, which also controlled the availability of local precipitation evaporated from these seas. However, these warming and cooling trends were occasionally dampened by the advent of more maritime climate accompanying sea-level rise during the early Holocene, and by the breakdown of the atmospheric circulation patterns created by continental ice sheets in North America during the last glacial maximum. Over the last 7 ka, a gradual, insolation-driven cooling trend ended in ca. AD 1850 when the exceptional rates of recent warming began that continue to today. I found that the vegetation, permafrost and sand dunes in Arctic Alaska were sensitive to external climate forcing, but their responses were moderated by strong, internal feedbacks, including the temperature-buffering effects that thick peat layers have on the underlying permafrost. Prior to peat buildup in the early Holocene, the timing of sedimentary transitions indicate permafrost and aeolian processes were highly responsive to the volatile climate during the last ice age, which included Greenland interstadials. This incessant ice age climate change, coupled with the complex biophysical landscape responses that are particular to the unglaciated Arctic, helped maintain the ecological mosaic of the Mammoth Steppe ecosystem. Prehistoric warming events triggered permafrost thaw and the release of ancient carbon during the Bølling-Allerød (14.5-12.9 ka) and early Holocene warm period (11.7-8.0 ka), and this release is likely to occur again given enough warming. In the boreal forest watershed near Fairbanks, Alaska, the current ecological regime has remained intact despite a three-fold increase in pre-settlement wildfires during the Fairbanks gold rush (1902-1940). Once continued warming surpasses the buffering effects of the current internal feedbacks of the North Slope and boreal forest and the threshold for change is reached, more dynamic aeolian and permafrost processes may again dominate as they did on the more unstable and diverse ice age landscape. Overall, the results of this work will be useful for understanding how climate and landscape change in northern Alaska will respond to global climate forcing in the future.
    • Late Cenozoic unroofing sequence and foreland basin development of the central Alaska Range: implications from the Nenana Gravel

      Thoms, E. E. (2000-05)
      Facies architecture analysis, lithostratigraphy, and ⁴⁰AR/³⁹AR analyses of syn-orogenic sediments from the Nenana Gravel consistently demonstrate that deformation and erosion of the Late Cenozoic Alaska Range progressed in a foreland propagating sequence. Alluvial braidplain sediments, the oldest sourced from south of the present range divide, were shed into depozones exhibiting characteristics that indicate the growth of an underlying orogenic wedge primarily controlled deposition. Those characteristics include very immature and locally derived sediments, erosional unconformities, evidence for the competing influences of uplift and subsidence, lithology transitions that are correlated with facies transitions, and evidence for drainages that were defeated by surface uplift. Deposition of the Nenana Gravel took place between roughly 7 and 3 Ma. The Nenana Gravel depositional system changed when deformation within the proximal reaches of the basin brought resistant basement rocks to the surface forcing antecedent drainages to incise and abandon the alluvial braidplain they once fed.
    • Late quaternary and future biome simulations for Alaska and eastern Russia

      Hendricks, Amy S.; Walsh, John; Saito, Kazuyuki; Bigelow, Nancy; Bhatt, Uma (2016-05)
      Arctic biomes across a region including Alaska and Eastern Russia were investigated using the BIOME4 biogeochemical and biogeography vegetation model. This study investigated past (the last 21,000 years), present, and future vegetation distributions in the study area, using climate forcing from five CMIP5 models (CCSM4, GISS-E2-R, MIROC-ESM, MPI-ESM, and MRI-CGCM3). The present-day BIOME4 simulations were generally consistent with current vegetation observations in the study region characterized by evergreen and deciduous taiga and shrub tundras. Paleoclimatological simulations were compared with pollen data samples collected in the study region. Pre-industrial biome simulations are generally similar to the modern reconstruction but differ by having more shrub tundra in both Russia and Alaska to the north, as well as less deciduous taiga in Alaska. Pre-industrial simulations were in good agreement with the pollen data. Mid-Holocene simulations place shrub tundras along the Arctic coast, and in some cases along the eastern coast of Russia. Simulations for the Mid-Holocene are in good agreement with pollen-based distributions of biomes. Simulations for the Last Glacial Maximum (LGM) show that the Bering Land Bridge was covered almost entirely by cushion forb, lichen and moss tundra, shrub tundra, and graminoid tundra. Three out of the five models’ climate data produce evergreen and deciduous taiga in what is now southwestern Alaska, however the pollen data does not support this. The distributions of cushion forb, lichen, and moss tundra and graminoid tundra differ noticeably between models, while shrub tundra distributions are generally similar. Future simulations of BIOME4 based on the RCP8.5 climate scenario indicate a northward shift of the treeline and a significant areal decrease of shrub tundra and graminoid tundra regions in the 21st century. Intrusions of cool mixed, deciduous, and conifer forests above 60°N, especially in southwest Alaska, were notable. Across eastern Russia, deciduous taiga begins to overtake evergreen taiga, except along the coastal regions where evergreen taiga remains the favored biome.
    • Lateral magma transport during the 1912 eruption of Novarupta: insights from magnetic imaging

      Hill, Graham J.; Eichelberger, John; Freymueller, Jeff; Faust-Larsen, Jessica (2003-08)
      The Valley of Ten Thousand Smokes (VTTS), on the Alaska Peninsula, was formed by the cataclysmic eruption of Novarupta (Katmai) in 1912. During the eruption, three magma types were tapped (7-8 km³ of rhyolite, 4.5 km³ of dacite, and 1 km³ of andesite). Contemporaneous collapse of Mount Katmai while Katmai-like andesite and dacite magma joined the eruption at Novarupta provides incontrovertible evidence for magma transport from beneath Mount Katmai caldera to the vent 10 km west at Novarupta (Hildreth and Fierstein, 2000). Shallow storage of the andesite and dacite magmas beneath Mt. Katmai prior to the eruption of 1912 is consistent with the volume of collapse at Katmai, equivalent to the combined volume of andesite and dacite erupted. A ground-based magnetic survey of the area was conducted to characterize the intriguing connection between Mt. Katmai and Novarupta. The magnetic field strength and gradient survey results suggest a linear anomaly that is best modelled by the presence of a shallowly (200-300 m) emplaced dike on the order of 5-10 m wide, which resembles the known physical properties of the 7 m-wide rhyolitic dike discovered during the drilling of Inyo Domes.
    • Latitudinal gradients in leaf litter decomposition in streams: Effects of leaf chemistry and temperature

      Irons, John Gillam, Iii (1993)
      Autumnal leaf litter that falls into streams of forested regions forms a major source of energy for stream food webs. The processing of this litter has been studied for many years, and two generalizations have come from this research: (1) nitrogen concentration is positively correlated with breakdown rate, and (2) temperature is negatively correlated with breakdown rate. Along with investigators in Michigan and Costa Rica, I examined these generalizations by estimating breakdown rates of litter of ten tree species with widely varying nutritional quality along the latitudinal gradient of Costa Rica to Michigan to Alaska. At each site, litter processing experiments were done using leaves of the same ten tree species and the same methods in streams with similar character. We found that (1) condensed tannin, a plant defense against herbivory, was more highly correlated (negatively) with breakdown rates than was nitrogen (positively correlated with breakdown), and (2) breakdown rate showed a complex response to water temperature (i.e., latitude). I propose a model of leaf litter breakdown in which the microbial contribution to litter breakdown is negatively correlated with latitude (i.e., temperature) and the invertebrate contribution to litter breakdown is positively correlated with latitude. In addition, I suggest that secondary compounds of low solubility, especially condensed tannin, should be considered along with nitrogen when evaluating a tree species for leaf litter quality.
    • Latitudinal patterns of amino acid cycling and plant N uptake among North American forest ecosystems

      McFarland, Jack W.; Ruess, Roger; Boone, Richard; Chapin, Stuart F. III; Kielland, Knut; Hendrick, Ronald L. (2008-12)
      Interest in the role of organic nitrogen (N) to the N economy of forest ecosystems is gaining momentum as ecologists revise the traditional paradigm in N cycling to emphasize the importance of depolymerization of soil organic matter (SOM) in controlling the bioavailability of N in forest soils. Still, there has yet to be a coordinated effort aimed at developing general patterns for soil organic N cycling across ecosystems that vary in climate, SOM quality, plant taxa, or dominant mycorrhizal association: ectomycorrhizae (EM) vs. arbuscular mycorrhizae (AM). In this study, experimental additions of 13C15N-glycine and 15NH4+ were traced in situ through fine root and soil N pools for six North American forest ecosystems in an effort to define patterns of plant and microbial N utilization among divergent forest types. Recovery of 15N in extractable soil pools varied by N form, forest type, and sampling period. At all sites, immobilization by the soil microbial biomass represented the largest short-term (<24 h) biotic sink for NH4+ and amino acid-N, but differences in microbial turnover of the two N forms were linked to cross-ecosystem differences in SOM quality, particularly the availability of labile carbon (C). At the conclusion of the experiment, microbial N turnover had transferred the majority of immobilized 15N to non-extractable soil N pools. By comparison, fine root uptake of NH4+ and glycine-N was low (<10% total tracer recovery), but 15N enrichment of this pool was still increasing at the final sampling period. Since there was no significant loss of 15N tracer within the bulk soil after 14 days for any forest type except sugar maple, it suggests plants have the capacity to capitalize on multiple N turnover events and thus represent an important long-term sink for ecosystem N. Plants in all stands had some capacity to absorb glycine intact, but plant N preference again varied by forest type. Relative uptake of amino acid-N versus inorganic N was lowest in tulip poplar and highest in red pine and balsam poplar, while white oak, sugar maple, and white spruce stands were statistically near unity with respect to the two N forms. However, N uptake ratios were threefold higher in EM-dominated stands than in AM-dominated stands indicating mycorrhizal association in part mediated plant N preference. Thus, amino acids represent an important component of the N economies of a broad spectrum of forest ecosystems, but their relevance to plant nutrition likely varies as a function of microbial demand for C as well as N.
    • Lichen Availability on the Range of an Expanding Caribou (Rangifer tarandus) Population in Alaska

      Fleischman, Steven J.; Klein, David R.; Thompson, Steven K.; Viereck, Leslie A.; White, Robert G.; Regelin, Wayne L. (1990-05)
      Terrestrial lichen abundance, lichen availability as affected by snow, and winter fecal composition were investigated for the Delta Caribou Herd (DCH), which recently quadrupled in size and expanded its early winter range. Mean lichen abundance was relatively low (10-85 g/m2). However, even on heavily-used range, caribou ate only 7% of lichen standing crop annually. Snow affected lichen availability only slightly on peripheral tundra ranges, since lichens predominated on xeric sites with little snow. On traditional ranges, lichens were shorter and rarely found in high-density patches; disproportionate grazing and trampling of exposed lichens had caused reduced lichen availability. This was reflected in lower fecal lichen for caribou on traditional ranges, however DCH population growth or seasonal movements probably were not substantially affected. A model of caribou cratering energetics indicated that loss of potential foraging time may influence energy balance more than does cratering energy expenditure.
    • Lidar and radar studies of turbulence, instabilities, and waves in the Arctic middle atmosphere

      Li, Jintai; Collins, Richard L.; Newman, David E.; Simpson, William R.; Thorsen, Denise L.; Williams, Bifford P. (2019-08)
      This dissertation presents new studies of gravity waves and turbulence in the Arctic middle atmosphere. The studies employ lidars and radar to characterize wave activity, instability and turbulence. In the lidar-based studies, we analyze turbulence and wave activity in the MLT based on lidar measurements of atmospheric temperature, density and sodium density, temperature and wind. This combination of measurements provides simultaneous characterization of both the atmospheric stability as well as material transport that allow us to estimate the eddy diffusion coefficient associated with turbulence. We extend the scope of previous studies by developing retrievals of potential temperature and sodium mixing ratio from the Rayleigh density temperature lidar and sodium resonance density lidar measurements. We find that the estimated values of turbulent eddy diffusion coefficients, K, of 400-2800 m²/s, are larger than typically reported (1-1000 m²/s) while the values of the energy dissipation rates, ε, of 5-20 mW/kg, are more typical (0.1-1000 mW/kg). We find that upwardly propagating gravity waves accompany the instabilities. In the presence of instabilities, we find that the gravity waves are dissipating as they propagate upward. We estimate the energy available for turbulence generation from the wave activities and estimate the possible turbulent energy dissipation rate, εGW. We find that the values of εGW are comparable to the values of ε. We find that the estimate of the depth of the layer of turbulence are critical to the estimate of the values of both ε and εGW. We find that our method tends to overestimate the depth, and thus overestimate the value of ε, and underestimate the value of εGW. In the radar-based study, we conduct a retrieval of turbulent parameters in the mesosphere based on a hypothesis test. We distinguish between the presence and absence of turbulence based on fitting Voigt-based and Lorentzian-based line shapes to the radar spectra. We also allow for the presence and absence of meteoric smoke particles (MSPs) in the radar spectra. We find examples of Poker Flat Incoherent Scatter Radar (PFISR) spectra showing both the presence and absence of turbulence and the presence and absence of MSPs in the upper mesosphere. Based on the analysis, we find that relatively few of the radar measurements yield significant measurements of turbulence. The significant estimates of turbulence have a strength that is over a factor of two larger than the average of the estimates from all of the radar measurements. The probability of true positives increases with the quality factor of the spectrum. The method yields significant measurements of turbulence with probabilities of true positives of greater than 30% and false positives less than 0.01%.
    • Lidar and satellite studies of noctilucent clouds over Alaska

      Alspach, Jennifer H.; Collins, Richard; Bossert, Katrina; Thorsen, Denise; Fochesatto, Javier (2020-05)
      This thesis presents studies of noctilucent clouds (NLCs) occurring in the summer polar mesosphere over Alaska. Lidar observations of NLCs conducted at Poker Flat Research Range in Chatanika, Alaska (65° N, 147° W) from 1998-2019 are analyzed. The NLCs detected by lidar are characterized in terms of their brightness properties and duration. NLCs were detected on ~51% of the nights when lidar observations have been conducted during NLC season. The brighter NLCs are found to exist at lower altitudes, indicating a growth-sedimentation mechanism. Cloud Imaging and Particle Size (CIPS) data from the Aeronomy of Ice in the Mesosphere (AIM) satellite is used to examine NLC occurrence and brightness over the Alaska region (60-70° N, 130-170° W). In general, high frequency and brightness in the CIPS data corresponds to positive detections of NLCs by the lidar. Microwave Limb Sounder (MLS) temperature and water vapor data from the Aura satellite is used to investigate the meteorological environment of the NLCs observed by lidar at Chatanika. The occurrence of NLCs at Chatanika is found to be driven by the temperature relative to the frost point. Low temperatures relative to the frost point (> 4 K below) correspond to observations when NLCs were present. High temperatures relative to the frost point (> 8 K above) correspond to observations when NLCs were absent. The MLS data is also used to investigate the stability of an ice cloud at different latitudes (64.7°-70.3° N) relative to the equilibrium water vapor mixing ratio. The stability study suggests that the weakest NLCs detected by lidar at Chatanika were in subsaturated conditions, and it is likely that the NLCs formed over several hundred kilometers to the north of Chatanika. The Rayleigh three-channel receiver system was used to conduct NLC measurements during 2019. A technical overview of the three-channel system and the density and temperature retrieval methods is presented at the end of the thesis using observations from the winter of 2018 and the summer of 2019.
    • Life-History Patterns Of North American Elk: Effects Of Population Density On Resource Partitioning, Reproduction, And Plant Productivity

      Stewart, Kelley Merlet; Bowyer, R. Terry (2004)
      I examined density dependence in North American elk (Cervus elaphus ) and effects of density dependent processes on resource partitioning, physical condition, reproduction, and ecosystem processes. Specifically, I examined spatial, temporal, and dietary niche partitioning among elk, mule deer (Odocoileus hemionus) and cattle (Bos taurus ). I tested hypotheses related to density-dependent processes in elk by creating populations at high (20.1 elk/km2) and low (4.1 elk/km2) density. I hypothesized that physical condition and fecundity of females would be lower in an area of high population density than in the low-density area. Simultaneously, I tested hypotheses relating to herbivore optimization in response to varying levels of herbivory. I observed differences among elk, mule deer, and cattle in diets and use of space, particularly elevation, slope, and use of logged forest. Those 3 herbivores showed strong avoidance over a 6-h temporal window, but that effect was weaker for the previous 7 days. Changes in habitat use by elk and mule deer in response to addition and removal of cattle indicated competitive displacement. Results of the experiment to examine density dependence in elk indicated reduced physical condition and reproduction in the high-density population compared with low-density population. Pregnancy rates were most affected by body condition and mass of females. Density dependence in elk also had strong effects on plant communities; net aboveground primary productivity (NAPP) increased from no herbivory to moderate grazing intensity, and then declined as grazing intensity continued to increase. Compensatory responses by plants likely are more difficult to detect when responses to herbivory are subtle and occur at relatively low grazing intensity. I observed strong effects of density dependence on physical condition of elk and reductions in NAPP of plant communities with high levels of grazing intensity. At high-population densities resources for elk declined and NAPP was reduced. At low-population density elk were in good physical condition with high rates of reproduction, and NAPP increased, indicating compensatory responses by plants. Density-dependent feedbacks in populations of large herbivores help regulate population dynamics, and those same processes have substantial effects on ecosystem functioning.
    • The limnology of Lake Clark, Alaska

      Wilkens, Alexander Xanthus (2002-12)
      This study gathered baseline limnological data to investigate the thermal structure, water quality, phytoplankton, and zooplankton of Lake Clark, Alaska. Results indicate Lake Clark is oligotrophic and mixes biannually, but stratification is weak and thermoclines are deep. Longitudinal gradients were seen in measurements of temperature, suspended solids, turbidity, light penetration, algal biomass, and zooplankton density. Wind and tributary inputs determine the thermal regime. Glacially-influenced tributaries drive turbidity and light gradients by introducing suspended solids to the inlet end of the lake. Suspended solids likely create the algal biomass gradient by limiting the light available for photosynthesis in the inlet basin. Algal biomass and turbidity gradients may interact to create an area of high productivity and low predation risk, causing high zooplankton concentrations in the central basin. Oxygen supersaturation was discovered in the hypolimnion but remains unexplained. Because tributaries are glacially influenced, Lake Clark could be sensitive to global warming.
    • Linear partial differential equations and real analytic approximations of rough functions

      Barry, Timothy J.; Rybkin, Alexei; Avdonin, Sergei; Faudree, Jill (2017-08)
      Many common approximation methods exist such as linear or polynomial interpolation, splines, Taylor series, or generalized Fourier series. Unfortunately, many of these approximations are not analytic functions on the entire real line, and those that are diverge at infinity and therefore are only valid on a closed interval or for compactly supported functions. Our method takes advantage of the smoothing properties of certain linear partial differential equations to obtain an approximation which is real analytic, converges to the function on the entire real line, and yields particular conservation laws. This approximation method applies to any L₂ function on the real line which may have some rough behavior such as discontinuities or points of nondifferentiability. For comparison, we consider the well-known Fourier-Hermite series approximation. Finally, for some example functions the approximations are found and plotted numerically.