• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Geosciences
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Geosciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Earthquake source mechanisms and three-dimensional wavefield simulations in Alaska

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Silwal_V_2018.pdf
    Size:
    127.2Mb
    Format:
    PDF
    Download
    Author
    Silwal, Vipul
    Chair
    Tape, Carl
    Committee
    Christensen, Douglas
    West, Michael
    Ruppert, Natalia
    Freymueller, Jeffrey
    Keyword
    Seismic event location
    Alaska
    Earthquakes
    Southcentral Alaska
    Seismic waves
    Seismic wave propagation
    Plate tectonics
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/9685
    Abstract
    This thesis presents: (1) a set of earthquake source mechanism catalogs for Alaska and (2) a threedimensional seismic velocity model of Alaska. The improved earthquake sources are used within the velocity model for generating synthetic seismograms, which are then compared with recorded seismograms to assess the quality of the velocity model. An earthquake source mechanism can be modeled as a moment tensor, which is a 3 × 3 symmetric matrix. We estimate the moment tensor for earthquakes by comparing observed waveforms (body waves and surface waves) with synthetic waveforms computed in a layered model. The improved moment tensor solutions are obtained by utilizing both the body waves and surface waves at as many broadband stations as possible. Further improvement in the inversion technique is obtained by (1) implementation of L1 norm in waveform misfit function and (2) inclusion of first-motion polarity misfit in the misfit function. We also demonstrate a probabilistic approach for quantifying the uncertainty in a moment tensor solution. Moment tensors can be used for understanding the tectonics of a region. In the Cook Inlet and Susitna region, west of Anchorage, we determined moment tensor solutions for small-tointermediate magnitude (M ≥ 2.5) crustal earthquakes. Analyzing these small earthquakes required us to modify the misfit function to include first-motion polarity measurements, in addition to waveform differences. The study was complemented with the probabilistic hypocenter estimation of large historical earthquakes (Mw ≥ 5.8) to assess their likelihood of origin as crustal, intraslab, or subduction interface. The predominance of thrust faulting mechanisms for crustal earthquakes indicate a compressive regime within the crust of south-central Alaska. Wavefield simulations are performed in three regions of Alaska: the southern Alaska region of subduction, the eastern Alaska region with the accreting Yakutat microplate, and the interior Alaska region containing predominantly strike-slip faulting, including the Minto Flats fault zone. Our three-dimensional seismic velocity model of Alaska is an interpolated body-wave arrival time model from a previous study, embedded with major sedimentary basins (Cook Inlet, Susitna, Nenana), and with a minimum shear wave velocity threshold of 1000 m/s. Our comparisons between data and synthetics quantify the misfit that arises from different parts of each model. Furtherwork is needed to comprehensively document the regions within each model that give rise to the observed misfit. This would be a step toward performing an iterative adjoint tomographic inversion in Alaska.
    Description
    Dissertation (Ph.D.) University of Alaska Fairbanks, 2018
    Date
    2018-08
    Type
    Dissertation
    Collections
    Geosciences

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2023 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.