• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Fisheries
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Fisheries
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    The reproductive biology and management of walleye pollock (Gadus chalcogrammus) in the Gulf of Alaska

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Williams_B_2018.pdf
    Size:
    21.31Mb
    Format:
    PDF
    Download
    Author
    Williams, Benjamin C.
    Chair
    Kruse, Gordon
    Committee
    Criddle, Keith
    Dorn, Martin
    Quinn, Terrance II
    Keyword
    Walleye pollock
    Fisheries
    Alaska
    Gulf of Alaska
    Management
    Reproduction
    Sustainable fisheries
    Fishery policy
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/9687
    Abstract
    Ecosystem-based fishery management (EBFM) entails treating resource allocation and management as elements of a comprehensive framework that accounts for ecological linkages. The goal of EBFM is to maintain ecosystem resiliency in a manner that provides for the services desired e.g., fishery catch, species abundance, economic viability. Historically fisheries have been managed on a per species basis with a general focus on increasing or decreasing harvest rates. This management strategy often excludes meaningful processes such as interactions with other species, environmental changes, and economic effects of management changes. One feasible path for implementation of EBFM is through enhancement of existing single-species fishery management models. Contemporary age-structured stock assessment models generally use an estimate of spawning stock biomass (SSB), i.e., the biomass of female spawning fish, to approximate stock reproductive potential (RP). This approximation inherently assumes a proportional relationship between SSB and RP. Maturity at age or at length is a key aspect of reproductive biology that is central to estimating both RP and SSB. As a sequential augmentation to a single species management model the relationships among body condition, population abundance, the probability of being mature, relative fecundity, and environmental correlates were examined for female walleye pollock Gadus chalcogrammus in the Gulf of Alaska. Maturity data were corrected for spatial sampling bias using a mixed-effects generalized additive model. Once corrected for spatial bias, relationships between maturity, ocean temperature, body condition, ocean productivity (in the form of chlrophyll-a), and population abundance were explored. Estimates of fecundity were updated through the processing of archived samples and were also examined with mixed-effects generalized additive models to explore relationships between the previously listed covariates. Multiple measures of RP were examined to explore differences between methods currently incorporated into the stock assessment and updated measures of total egg production and time varying maturity. Walleye pollock body condition is density-dependent, declining with population abundance. However, after accounting for the effects of length, age, location, year, chlorophyll-a concentrations, summer ocean temperature and sample haul, condition has a positive effect on the probability of a fish being mature. Similarly, condition has a positive effect on relative fecundity, after accounting for length, age, egg diameter, chlorophyll-a concentrations, winter ocean temperature and sample haul. A positive relationship is observed between depth-integrated summer ocean temperature and maturity and depth-integrated winter ocean temperature and fecundity. Chlorophyll-a concentrations have a dome shaped relationship with maturity, peaking at 2.3 mg/m⁻³, and a negative relationship with fecundity. Variations in body condition have a direct influence on the estimated RP of the fish stock through both differences in the maturation schedule and total egg production. Over some periods these updated estimates of RP differ from estimates of female SSB from the annual stock assessment. Alternative estimates of annual RP, particularly total egg production, may provide better estimates of annual reproductive output than spawning stock biomass. In addition, relationships to density-dependent and density-independent factors provide informative predictions that can be incorporated into stock assessment analyses. Inclusion of spatially explicit information for walleye pollock maturity has implications for understanding stock reproductive biology and thus the setting of sustainable harvest rates used to manage this valuable fishery. Additionally, because management decisions have economic as well as biological consequences a suite of management strategies were simulated to examine the economic viability of a proposed small-vessel walleye pollock fishery in Alaska state waters in the Gulf of Alaska. As a case-study for straddling stocks, an agent-based model was developed to examine a suite of available federal and state management strategies as they relate to the economic viability of a nascent Alaska state-waters trawl fishery for walleye pollock that may develop after a long history of parallel state and federal waters management. Results of alternative strategies were compared in terms of indicators, such as variance of catch and quasi-rent value. Given the input characteristics of these simulations, the management strategy that produces the best overall improvements relative to status quo involved a federal-waters management strategy that allows for community-based cooperatives and an open access strategy in state-waters. Agent-based models may be used to inform managers of the underlying dynamics of catches and revenues in order to avoid unintended consequences of management decisions and to improve the likelihood of attaining fishery management objectives. This dissertation provides incremental additions to our knowledge of walleye pollock reproductive biology its spatial and temporal dynamics, and environmental correlates that may serve as ecological indices. These indices, coupled with an improved understanding of the socio-economic examinations of fishery management changes through agent-based modeling, may assist in producing more holistic management strategies, such as EBFM.
    Description
    Dissertation (Ph.D.) University of Alaska Fairbanks, 2018
    Date
    2018-08
    Type
    Dissertation
    Collections
    Fisheries

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2023 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.