• Midlatitude Cirrus Cloud Structural Properties Analyzed From The Extended Facility For Atmospheric Remote Sensing Dataset

      Wang, Likun; Sassen, Kenneth; Cahill, Cathy; Mölders, Nicole; Shaw, Glen; Starr, David O'C (2004)
      The knowledge on cirrus inhomogeneous structural properties is important not only in radiation calculations, but also in deeply understanding the dynamics mechanism including the formation, development, and dissipation of cirrus clouds. The midlatitude cirrus inhomogeneous structural properties have been evaluated by analyzing the 10-year high cloud datasets obtained at the University of Utah, Facility for Atmospheric Remote Sensing in Salt Lake City, UT. Three goals have been reached in this research. First, the means to analyze lidar data using wavelet analysis, an advanced approach to obtain information on the structure of cirrus clouds, has been successfully developed. And then, typical cirrus structures including Kelvin-Helmholtz instabilities, cirrus mammata, and the uncinus cells have been analyzed by case studies and statistical survey. Their dynamical mechanisms, environmental characteristics, and vertical and horizontal length scale have been studied. Thirdly, using the method based on the wavelet transform and other methods, a climatology of midlatitude cirrus horizontal inhomogeneous properties is developed from the FARS lidar backscattered power data, the proxies of real cirrus clouds.