• A Concept To Assess The Performance Of A Permafrost Model Run Fully Coupled With A Climate Model

      Paimazumder, Debasish (2009)
      Soil-temperatures simulated by the fully coupled Community Climate System Model LCM version 3.0 (CCSM3) are evaluated using three gridded Russian soil-temperature climatologies (1951-1980, 1961-1990, and 1971-2000) to assess the performance of permafrost and/or soil simulations. CCSM3 captures the annual phase of the soil-temperature cycle well, but not the amplitude. It provides slightly too high (low) soil-temperatures in winter (summer) with a better performance in summer than winter. In winter, soil-temperature biases reach up to 6 K. Simulated near-surface air temperatures agree well with the near-surface air temperatures from reanalysis data. Discrepancies in CCSM3-simulated near-surface air temperatures significantly correlate with discrepancies in CCSM3-simulated soil-temperatures, i.e. contribute to discrepancy in soil-temperature simulation. Evaluation of cloud-fraction by means of the International Satellite Cloud Climatology project data reveals that errors in simulated cloud fraction explain some of the soil-temperature discrepancies in summer. Evaluation by means of the Global Precipitation Climatology Centre data identifies inaccurately-simulated precipitation as a contributor to underestimating summer soil-temperatures. Comparison to snow-depth observations shows that overestimating snow-depth leads to winter soil-temperature overestimation. Sensitivity studies reveal that uncertainty in mineral-soil composition notably contributes to discrepancies between CCSM3-simulated and observed soil-temperature climatology while differences between the assumed vegetation in CCSM3 and the actual vegetation in nature marginally contribute to the discrepancies in soil-temperature. Out of the 6 K bias in CCSM3 soil-temperature simulation, about 2.5 K of the bias may result from the incorrect simulation of the observed forcing and about 2 K of the bias may be explained by uncertainties due network density in winter. This means that about 1.5 K winter-bias may result from measurement errors and/or model deficiencies. Overall, the performance of a permafrost/soil model fully coupled with a climate model depends partly on the permafrost/soil model itself, the accuracy of the forcing data and design of observational network.
    • Analysis Of Model And Observation Data For The Development Of A Public Pm2.5 Air-Quality Advisories Tool (Aquat)

      Tran, Huy Nguyen Quang; Molders, Nicole; Bhatt, Uma; Cahill, Catherine F.; Grell, Georg A.; Kramm, Gerhard (2012)
      An air-quality advisory tool (AQuAT) that combines mobile measurements of particulate matter less than or equal to 2.5mum in diameter (PM2.5) with air-quality simulations performed with the Alaska adapted version of the Community Multiscale Air Quality (CMAQ) model was developed to interpolate PM2.5-measurements into unmonitored neighborhoods in Fairbanks, Alaska. AQuAT was developed as traditional interpolation methods of interpolating the mobile measurements were unsuccessful. Such a spatially differentiated air-quality advisory is highly desired in Fairbanks due to health concerns of PM2.5, and the need to improve the quality of life. The accuracy of AQuAT depends on the accuracy of the air-quality simulations used for its database. Evaluation of these simulations showed that they captured the observed relationships between PM2.5-concentrations and major meteorological fields (e.g., wind-speed, temperature, and surface-inversions) well. Skill scores for simulated PM2.5-concentrations fell in the range of modern models. The AQuAT database can include information on the nonlinear impacts of various emission sources on PM2.5-concentrations. This benefit was illustrated by investigating the impacts of emissions from point sources, uncertified wood-burning devices, and traffic on the distribution of PM 2.5-concentrations in the neighborhoods. Sensitivity studies on the effects of wood-burning device changeouts on the PM2.5-concentrations suggested that the emission inventory should be updated as soon as possible to capture recent changes in the emission situation in response to the changeout program. The performance of AQuAT was evaluated with PM2.5-measurements from mobile and stationary sites, and with simulated PM2.5-concentrations of winter 2010/2011 which were assumed to be "grand-truth" data. These evaluations showed that AQuAT captured the magnitudes and temporal evolutions of the PM 2.5-measurements and the "grand-truth" data well. The inclusion of wind-speed, wind-direction, and temperature in AQuAT did not improve its accuracy. This result may be explained by the fact that the relationships between meteorology and PM2.5-concentrations were already captured by the database. AQuAT allows quick spatial interpolation after the mobile measurements were made and provides error bars. It also allows for any route within the area for which a database of simulated concentrations exists. It was shown that AQuAT can be easily transferred for applications in other regions.
    • An analysis of turbulent sensible heat fluxes within a heterogeneous black spruce boreal forest in Alaska

      Starkenburg, Derek P.; Fochesatto, Gilberto J.; Prakash, Anupma; Kane, Douglas L.; Gens, Rudiger; Cristóbal, Jordi (2015-05)
      Turbulent sensible heat fluxes within the heterogeneous canopy of a black spruce boreal forest in Interior Alaska are evaluated at three different scales in order to assess their spatial variability, and to determine the feasibility of upscaling locally measured flux values to the landscape scale for modeling applications and climate studies. The first evaluation is performed locally at a single micrometeorological tower in an area of the boreal forest with a mean canopy height of 4.7 m. The data were taken across winter, spring and summer of 2012 from two sonic anemometers, one below the canopy at 3 m above ground, and one above the canopy at 12 m above ground. A multiresolution analysis is used to isolate coherent structures from the turbulent temperature time series at both instruments. When mean global statistics of coherent structures are analyzed at the two levels independently, results show an average of 8 structures per period, a mean duration of 85 s, and a mean sensible heat flux contribution of 48%. A spectral version of the Stokes parameters is applied to the turbulent horizontal wind components to show that 31% of the coherent turbulent structures detected at 12 m, and 13% at 3 m, may be complicated by canopy waves due to the prevalence of stable flows at this high latitude location. A most remarkable finding is that less than 25% of the coherent structures detected at these two heights occur synchronously, which speaks robustly to the lack of flow interaction within only 9 vertical meters of the forest, and to the complexity of the vertical aggregation of sensible heat therein. The second evaluation quantifies differences in turbulent sensible heat fluxes horizontally between two micrometeorological towers 600 m apart, one in a denser canopy (DC) and the other in a sparser canopy (SC), but under approximately similar atmospheric boundary layer conditions. Results show that SC is ~ 3°C cooler and more stably stratified than DC during nighttime. This suggests that changes in the height and density of the canopy impact local temperature and stability regimes. Most importantly, the sensible heat flux at DC is greater during midday periods, with that difference exceeding 30% of the measured flux and over 30 W m⁻² in magnitude more than 60% of the time. This difference is the result of higher mechanical mixing due to the increased density of roughness elements at DC. Furthermore, the vertical distribution of turbulent heat fluxes verifies a maximum above the canopy crown when compared with the levels below and well above the canopy. These spatial variations of sensible heat flux result from the complex scale aggregation of energy fluxes over a heterogeneous canopy, and suggest that locally measured fluxes will likely differ from large-scale area averaged values. The third evaluation compares locally measured sensible heat fluxes from a sonic anemometer atop a 24 m micrometeorological tower to those derived from a large aperture scintillometer (LAS) whose beam is centered near the tower at an average height of 36 m above ground, and over a path length of 1423 m. This analysis focuses on unstable daytime periods from June, July and August of 2013. The daytime is defined as 0700-2000 Alaska Standard Time, since local sensible heat flux values derived from the sonic anemometer (HEC) are robust (above 50 W m⁻²) during this time, and since this time also agrees with the minima in the mean diurnal pattern of Cn² from the LAS. For daytime periods with robust sensible heat flux values, HEC and the large-scale flux from the LAS (HLAS) correlate with R² = 0.68, while HEC captures about 82% of HLAS on average. The magnitude of HEC and HLAS are both strongly sensitive to incoming solar radiation, with HLAS having a better correlation and regression slope, suggesting that the local measurements are adjusting also to surface and/or flow conditions above the heterogeneous canopy. Evaluation of the magnitude of the ratio of HEC/HLAS for days with varying amounts of solar radiation suggests that while radiation affects the magnitude of HEC and HLAS independently, it does not affect their ratio. For daytime periods with lower fluxes (HEC between 10 and 50 W m⁻²), HEC captures about 69% of HLAS on average. However, local and large-scale fluxes during this low flux regime correlate poorly with incoming solar radiation (R² = 0.42 for HLAS and R² = 0.15 for HEC), and with one another (R² = 0.27), suggesting that local heterogeneities are not well-integrated into the large-scale flux. Therefore, low flux periods should be considered separately for the purposes of upscaling local to landscape scale flux values in the boreal forest. For the high flux regime, a finer resolution of upscaling can be provided based on the mean diurnal pattern of HEC/HLAS and the Obukhov length (L). Namely, as the boundary layer becomes less unstable in late afternoon, HEC/HLAS increases, supporting that the eddy covariance technique can capture more of the large-scale flux when the boundary layer is more shear-driven (less buoyancy driven).
    • Analysis of uncertainty in simulated exchange of heat and moisture at the land-atmosphere interface

      Jankov, Mihailo (2005-08)
      Land surface models (LSMs) serve to describe the atmosphere-land surface exchange in numerical weather prediction models (NWPMs) and global circulation models (GCMs). The use of empirical soil and vegetation parameters in LSMs introduces uncertainty that propagates and affects predictions of the lower boundary conditions. To statistically assess that uncertainty in predicted evapotranspiration (water transport by direct evaporation from bare ground and canopy and transpiration by the canopy) and ground heat flux for natural ranges of atmospheric soil and vegetation conditions, the Gaussian Error Propagation method is utilized. The assessed uncertainties in direct and canopy water evaporation, transpiration and ground heat flux display prominent diurnal cycles. Prediction of evapotranspiration in desert areas is limited by the uncertainty in the evaporation of water collected on the canopy and transpiration. To improve predictions of evapotranspiration the maximal canopy storage and shielding factor should be determined with higher accuracy. It is found that uncertainty in ground heat flux is particularly great in dry and warm areas covered with sandy clay loam. A better prediction of ground heat flux requires a better parameterization of thermal conductivity and a higher degree of accuracy of the pore size distribution index.
    • Arctic spring transition in a warming climate: analysis by using a reanalysis dataset

      De, Bithi; Zhang, Xiangdong; Collins, Richard; Fochesatto, Javier (2014-05)
      An increased warming trend over the Arctic in recent years has been documented using observations, and is expected to continue by climate model projections. This increase may shift the springtime transition time, causing an earlier onset of summer and resulting in a longer sea-ice melt and vegetation growing period over the Arctic. In this study, we investigated variability of and changes in the spring transition in a warming climate and examined attributions of various dynamic and thermodynamic processes. The results demonstrate a dramatic increase in springtime surface air temperature (SAT) over the Arctic since 1979. Physical analysis reveals an increase in poleward moisture and latent heat transport accompanied by an enhancement of cloud cover, which result in positive downward longwave radiation. A persistent increase in poleward warm air advection is also found; leading to sensible heat flux from the warmer atmosphere to the surface furthering the surface warming. Retreat of sea ice cover reduces surface albedo, making an additional contribution to the surface warming. In addition to the overall evaluation of these physical processes, composite analysis suggests that relative contributions from these processes to the increased springtime SAT vary across different geographic subregions.
    • Assessing River Ice Breakup Date, Coastal Tundra Vegetation And Climate Divisions In The Context Of Alaska Climate Variability

      Bieniek, Peter A.; Bhatt, Uma (2012)
      In Alaska, there exists a substantial knowledge gap of key climate drivers and filling these gaps is vital since life and the economy are inexorably linked with climate in the state. This thesis identifies and investigates three topics that advance the understanding of Alaska climate variability: the role of large-scale climate in Interior river ice breakup, the link between climate and arctic tundra vegetation, and climate divisions based on objective methods. River ice breakup in the Yukon-Kuskoswim watershed is occurring earlier by 1.3 days decade-1 1948-2008 and displays large year-to-year variability. April-May Interior Alaska air temperatures are the best predictor of river ice breakup and were linked to El Nino Southern Oscillation (ENSO). During the warm phase of ENSO, fewer storms track into the Gulf of Alaska during Boreal Spring, resulting in reduced April-May cloudiness over Alaska, increased solar insolation at the land surface, warmer air temperatures and consequently earlier breakup. Northern Alaska tundra vegetation productivity has increased 1982-2011, based on the Normalized Difference Vegetation Index (NDVI), a satellite measure of vegetation correlated with above ground biomass. Vegetation productivity was linked to the Beaufort High circulation as well as snowfall, in addition to land surface temperatures and coastal sea ice extent. NDVI has decreased from 1982-2011 over the coastal tundra along the Bering Sea and was correlated with delayed springtime warming due to enhanced coastal sea ice and a delayed snowmelt. Cluster analysis was applied to 2-meter air temperature data 1977-2010 at meteorological stations to construct climate divisions for Alaska. Stations were grouped together objectively based on similar homogeneous seasonal and annual climate variability and were refined using local expert knowledge to ultimately identify 13 divisions. Correlation analysis using gridded downscaled temperature and precipitation data validated the final division lines and documented that each division has similar a similar annual cycle in temperature and precipitation. Overall, this work documented substantial links and identified mechanisms joining the large-scale climate to that of Alaska. A better understanding of the role of large-scale climate variability in river ice breakup or tundra greening holds promise for developing seasonal and longer-term forecasts.
    • Assessment of high latitude variability and extreme events in the Bering Sea as simulated by a global climate model

      Walston, Joshua M.; Walsh, John E.; Gibson, Georgina A.; Bhatt, Uma S. (2014-08)
      Atmospheric and Oceanic observations of the Arctic and Subarctic are relatively sparse and hinder our ability to analyze short term variability and long-duration anomalies of physical and biological variables over decadal time scales. Earth System Models (ESM's), such as the Community Earth System Model (CESM1), represent a useful tool to advance the understanding and the predictive potential of large-scale shifts in the climate and climate related impacts. This thesis initially focuses on assessing the skill of the Community Climate System Model (CCSM4), to capture natural variability of the climate system. Subsequently, I examine the impacts of variability and seasonal-scale extremes of the physical environment on the marine ecosystem of the eastern Bering Sea as simulated by an earth system model, the CESM1, which includes the CCSM4 and earth system elements. A performance assessment of key atmospheric components (air temperature, sea level pressure, wind speed and direction) simulated by the CCSM4 over the Bering Sea and Arctic domains suggests a general improvement in model predictions at high latitudes relative to the model's predecessor, the CCSM3. However, several shortcomings, with possible implications for marine ecosystem modeling, still remain in this version of the CCSM. The most important of which includes an under-simulated Siberian High and a large northwest displacement of the Aleutian Low resulting in a negative bias of up to 8 hPa over the Bering Sea. The simulated inter-annual variability of surface air temperature and sea level pressure over the Bering Sea was found to exceed observed variability by ~1.5 to 2 times. The displaced pressure systems and increased variability could have important ramifications for modeling efforts that use CCSM atmospheric output as drivers for marine ecosystem studies.
    • Assessment of particulate accumulation climatology under inversions in Glacier Bay for the 2008 tourist season using WRF/Chem data

      Pirhalla, Michael A.; Mölders, Nicole; Bhatt, Uma; Polyakov, Igor; Gende, Scott (2014-05)
      Each summer, roughly one million tourists come to Southeast Alaska aboard cruise ships to see the pristine landscape and wildlife. Tourism is an integral component in the economy for most of the towns and villages on the Alaska Panhandle. With ship emissions only modestly regulated, there have been some concerns regarding the potential environmental impacts that cruise ships have on air quality, wildlife, and visitor experience. Cruise ships travel to remote regions, and are frequently the only anthropogenic emissions source in federally protected parks, such as Glacier Bay National Park and Preserve. In the absence of winds and synoptic scale storm systems common in the Gulf of Alaska, temperature inversions frequently develop inside Glacier Bay due to radiative cooling influenced by the complex topography inside the park. Inversions act as a lid, and may trap pollutants from cruise-ship emissions depending on the meteorological conditions present. Since meteorological observations are sparse and frequently skewed to easily accessible locations, data from the Weather Research and Forecasting Model, coupled with a chemistry package (WRF/Chem), were used to examine the physical and chemical processes that are impossible to determine through direct observations. Model simulation data for 124 days during the 2008 tourist season (May 15 to September 15), including a cruise-ship emission inventory for all 225 cruise ship entries in Glacier Bay, was analyzed. Evaluation of WRF/Chem through meteorological observations reveals that the model accurately captures the synoptic conditions for most of the summer, despite problems with complex topography. WRF/Chem simulated quasi-multi-day inversion events, with strengths as high as 6.7 K (100 m)⁻¹. Inversions were present in all grid-cell locations in Glacier Bay, with inversions occurring on average of 42% of the days during the tourist season. WRF/Chem was able to model PM₁₀ (particulate matter with diameter less than 10 μm) concentrations from cruise ships, but the absence of aerosol monitoring sites does not allow us to confirm the results. However, no simulated particulates ever exceed the daily average National Ambient Air Quality Standard (NAAQS) of 150 μg m⁻³. The high variability of particle concentrations in Glacier Bay suggests the need for an air quality observational network to further assess local air quality issues.
    • Atmospheric Forcing Of Wave States In The Southeast Chukchi Sea

      Francis, Oceana P.; Bhatt, Uma (2012)
      The objective of this study was to assess the impact that the ocean state, particularly ocean waves, have on coastal communities and operations in the Western Alaska region. In situ measurements and one-dimensional spectra models, were used to link observed wave activity -- wind-sea and swells -- to their synoptic drivers. Bottom-mounted Recording Doppler Current Profilers (RDCPs) were placed at offshore and nearshore locations in the southeast Chukchi Sea, Alaska, during 2007 and 2009-2010. The highest significant wave height (SWH) "events" were defined as wave heights above 2m and 3m for a duration of 6h or more. Results show that SWH events appeared to be driven by three types of systems, 1) cyclonic systems that moved into the eastern Bering Sea and then stalled there, 2) cyclonic systems that moved into the eastern Chukchi Sea and then loitered there, and 3) a cyclonic system over the Brooks Range, a less common occurrence. Results also show the offshore region having highest SWHs with an east wind and wave direction, and classified as a wind-sea state. For the nearshore region, highest SWHs with south and west wind and wave directions, generally showed a swell state. Agreement between one-dimensional spectral models and in situ measurements was greatest for the higher wind-sea state in the offshore region, while discrepancies arose for the lower swell state in the nearshore region. Cross-validation of in situ measurements with satellite altimeter radar measurements were also conducted. Good correlation was found for the offshore regions but not for the nearshore regions. Satellite observations were also used to assess wave conditions in the Arctic during the years 1993-2011. A 0.020m/year increase of SWH for the SE Chukchi Sea and a 0.025m/year increase for the Pacific-Arctic, was found which correlates well with diminishing sea ice and the heighted wind speed, also shown in this study.
    • Atmospheric forcing of wave states in the southeast Chukchi Sea

      Francis, Oceana Puananilei; Atkinson, David; Bhatt, Uma; Metzger, Andrew; Walsh, John; Weingartner, Thomas (2012-05)
      The objective of this study was to assess the impact that the ocean state, particularly ocean waves, have on coastal communities and operations in the Western Alaska region. In situ measurements and one-dimensional spectra models, were used to link observed wave activity – wind-sea and swells – to their synoptic drivers. Bottommounted Recording Doppler Current Profilers (RDCPs) were placed at offshore and nearshore locations in the southeast Chukchi Sea, Alaska, during 2007 and 2009-2010. The highest significant wave height (SWH) “events” were defined as wave heights above 2m and 3m for a duration of 6h or more. Results show that SWH events appeared to be driven by three types of systems, 1) cyclonic systems that moved into the eastern Bering Sea and then stalled there, 2) cyclonic systems that moved into the eastern Chukchi Sea and then loitered there, and 3) a cyclonic system over the Brooks Range, a less common occurrence. Results also show the offshore region having highest SWHs with an east wind and wave direction, and classified as a wind-sea state. For the nearshore region, highest SWHs with south and west wind and wave directions, generally showed a swell state. Agreement between one-dimensional spectral models and in situ measurements was greatest for the higher wind-sea state in the offshore region, while discrepancies arose for the lower swell state in the nearshore region. Cross-validation of in situ measurements with satellite altimeter radar measurements were also conducted. Good correlation was found for the offshore regions iv but not for the nearshore regions. Satellite observations were also used to assess wave conditions in the Arctic during the years 1993-2011. A 0.020m/year increase of SWH for the SE Chukchi Sea and a 0.025m/year increase for the Pacific-Arctic, was found which correlates well with diminishing sea ice and the heighted wind speed, also shown in this study.
    • Atmospheric moisture transport and its impact on the water cycle over Alaska and Hawaii: the roles of the Pacific Decadal Oscillation and El Nino

      Borries, Cecilia J.; Zhang, Xiangdong; Bhatt, Uma; Mölders, Nicole (2014-05)
      Precipitation over the North Pacific can fluctuate under climate patterns such as the Pacific Decadal Oscillation (PDO) and El Niño-Southern Oscillation (ENSO). In order to better understand the role which these climatic patterns play in the North Pacific water budgets and pathways, we employed the Community Atmosphere Model 5.0 (CAM) and conducted sensitivity experiments to examine how atmospheric moisture convergence and moisture transport respond to sea surface temperature (SST) anomalies associated with the PDO and ENSO phase transitions. We have found that changes in transient moisture transport, as the PDO phase shifts from cool to warm, are due to increases in specific humidity and decreases in wind speeds over Alaska and the North Pacific. Additionally, increases in moisture convergence, specific humidity, and wind speeds and decreases in transient moisture transport are seen over the North Pacific during El Niño events compared to La Niña events.
    • Autonomous Full-Time Lidar Measurements Of Polar Stratospheric Clouds At The South Pole

      Campbell, James R.; Sassen, Kenneth (2006)
      Polar stratospheric clouds (PSC) are an artifact of extremely low temperatures in the lower-stratosphere caused by a lack of sunlight during winter. Their presence induces increased concentrations of chlorine and bromine radicals that drive catalytic ozone destruction upon the return of sunlight in spring. An eye-safe micropulse lidar (MPL; 0.23 mum) was installed at the Scott-Amundsen South Pole Station, Antarctica in December 1999 to collect continuous long-term measurements of polar clouds. A four-year data subset for analyzing PSC is derived from measurements for austral winters 2000 and 2003--2005. A statistical algorithm based on MPL signal uncertainties is designed to retrieve PSC boundary heights, attenuated scattering ratios and demonstrate instrument performance for low signal-to-noise measurements. The MPL measurements consist mostly of Type II PSC (i.e., ice). The likelihood for Type I measurements are described for specific conditions. Seasonal PSC macrophysical properties are examined relative to thermodynamic and chemical characteristics. The potential for dehumidification and denitrification of the lower Antarctic stratosphere is examined by comparing PSC observations to theoretical predictions for cloud based on common scenarios for water vapor and nitric acid concentrations. Conceptual models for seasonal PSC occurrence, denitrification and dehumidification and ozone loss are described. A linear relationship is established between total integrated PSC scattering and ozone loss, with high correlation. Polar vortex dynamics are investigated in relation to PSC occurrence, including synoptic-scale geopotential height anomalies, isentropic airmass trajectories and local-scale gravity waves. Moisture overrunning, from quasi-adiabatic cooling and transport along isentropic boundaries, is considered a primary mechanism for PSC occurrence. Middle and late-season PSC are found to be the result of mixing of moist air from the outer edges of the vortex that coots upon reaching South Pole. Gravity waves are considered to be only a secondary influence on PSC nucleation and growth.
    • Characteristics And Variability Of Storm Tracks In The North Pacific, Bering Sea And Alaska

      Dos Santos Mesquita, Michel (2009)
      Storm activity in the North Pacific, Bering Sea and Alaska regions is investigated using various automated storm tracking and parameter extraction algorithms. Specific, novel details of storm activity throughout the year are presented. The influence of major climatic drivers is considered, including the Pacific/North American Index and sea ice variability. Details of synoptic-scale forcing on a specific, severe storm event are considered in the context of how different tracking algorithms are able to depict the event. New storm climatology results show that the inter-seasonal variability is not as large during spring and autumn as it is in winter. Most storm variables exhibited a maxima pattern that was oriented along a zonal axis. From season to season this axis underwent a north-south shift and, in some cases, a rotation to the northeast. Barotropic processes have an influence in shaping the downstream end of storm tracks and, together with the blocking influence of the coastal orography of northwest North America, result in high lysis concentrations, effectively making the Gulf of Alaska the "graveyard" of Pacific storms. Summer storms tended to be longest in duration. Temporal trends tended to be weak over the study area. Sea surface temperature did not emerge as a major cyclogenesis control in the Gulf of Alaska. Positive sea-ice anomalies in the Sea of Okhotsk were found to decrease secondary cyclogenesis, shift cyclolysis locations westward, and alter the North Pacific subtropical jet. In the Atlantic, a negative North-Atlantic-Oscillation-like pattern is observed; these results were confirmed by experiments on the ECHAM5 Atmospheric Global Circulation Model driven with sea-ice anomalies in the Sea of Okhotsk. The destructive west Alaska storm of autumn 1992, which flooded Nome, was investigated using two storm tracking algorithms: NOAA's (National Oceanic and Atmospheric Administration) current operational algorithm and the Melbourne algorithm. Manual tracking was performed as a control. The main storm location features were captured by both algorithms, but differed in the genesis and lysis location. The NOAA algorithm broke the event into two. This storm was shown to have been affected by a blocking high that influenced how the tracking algorithms handled the event.
    • Characteristics of Arctic storms and their influence on surface climate

      Yang, Yang; Zhang, Xiangdong; Danielson, Seth; Fochesatto, Javier; Hock, Regine (2020-05)
      Impacts of intense synoptic storms on Chukchi Sea and Beaufort Sea surface environmental conditions are examined, focusing on storms moving into the regions with northward and eastward pathways. Both storms alter the prevailing northeasterly wind to southerly and southwesterly wind. The storms moving from the East Siberian Sea that follow a west to east route are most active in summer and have the longest duration. Increasing southwesterly wind plays a key role in the decline of thin sea ice within the warm season. Storms traveling from the relatively warm Pacific Ocean into the Arctic over the Bering Strait are more common in winter, and are typically more intense than the summer storms that propagate west to east. Downward longwave radiation increases considerably with the passage of intense winter storms over the ice-covered Chukchi Sea; the sea ice concentration decreases accordingly. The impact of different sea ice conditions on Arctic synoptic storm systems in autumn are investigated in the North Pacific and Atlantic sectors, based on the ten ensembles of hindcast simulations from coupled regional climate model HIRHAM-NAOSIM. In both the Pacific and Atlantic sectors, greater transfers of heat and moisture fluxes from the open ocean to the atmosphere occur in low sea ice years than in high sea ice years. The largest increase of upward heat fluxes and baroclinicity occurs over the Laptev, southern Chukchi and Beaufort Seas in the Pacific sector, and over the southern Greenland and Barents Seas in the Atlantic sector. Enhanced baroclinity plays a dominant role in the development of intense storm systems. Therefore, storms in reduced sea ice years are more intense than in enhanced sea ice years in both Atlantic and Pacific sectors. The storm count also increases over locations exhibiting high baroclinicity. Sea ice volume anomalies are significantly correlated with synoptic storm counts based on maximum covariance analysis (MCA) leading modes of covariance between sea ice volume and storm count over Pacific and Atlantic sectors are identified respectively. The results are consistent with our findings in the composite analysis. In the Pacific sector, the first pattern of the MCA demonstrates that increasing storm counts over the Laptev Sea corresponds to decreasing sea ice volume over that region. In the Atlantic sector, the decrease of sea ice volume is highly correlated with decreasing storm counts over the northern Greenland Sea. Connection of storm activity over the North Pacific Ocean with the tropical stratosphere quasi-biennial oscillation (QBO) is investigated following a composite analysis of intense storm vertical cross sections. An observed stronger potential vorticity anomaly of intense storms is associated with the QBO west phase and results in enhanced warm air advection near the surface. A warm core structure forms over the east or northeast direction relative to the surface low center, which bows the isentropes downward. Upward motion following the isentropes reduces the surface low pressure, which in turn, facilitate storms to keep propagating in east and northeast directions. Under the QBO east phase, a weak surface warm core forms to the southeast of the storm center, resulting in a slow development of the storms, and these storms tend to move southeastward.
    • Climate and predictability of Alaska wildfires

      Bieniek, Peter A. (2007-12)
      Wildfires burn an average of 3,760km² each year in Alaska, but varies greatly from year to year. These fires, started by human and natural causes, can endanger life and property when they approach populated areas. The relationship between seasonal area burned and monthly and seasonal average mean sea level pressure, surface air temperature, total column precipitable water, 500hPa and 700hPa geopotential height, 700hPa specific humidity and 1000-500hPa layer thickness is examined. The assessment was done by examining the spring and summer seasonal composites associated with extreme high and low seasons. This showed the predominant anomalies from the climatology for seasons of both extremes. Point correlations were also made between seasonal area burned and the aforementioned climate variables for the entire Northern Hemisphere. Points of particularly high correlation with area burned were used in multiple regressions for both spring and summer, and for the preseason only to predict seasonal area burned. Results show correlations of about 0.78 for the preseason regression and 0.91 for the total period. The seasonal area burned in Alaska is intimately linked with the ongoing synoptic situation on monthly and seasonal scales before and during the fire season.
    • Climatology and forcing mechanisms of funnel clouds in Alaska

      Edwin, Stanley G.; Mölders, Nicole; Bhatt, Uma S.; Collins, Richard L. (2016-08)
      There are no forecasting systems for funnel clouds for Alaska. The inability of forecasting is problematic because funnel clouds pose a threat to aviation, which serves as Alaska’s main form of transportation. Motivated by the lack of research on the formation of funnel clouds in Alaska, this research investigated characteristics of funnel clouds and atmospheric conditions under which funnel clouds form using operational Doppler weather radars and radiosonde soundings as well as synoptic weather maps. In Alaska, funnel clouds usually occur during the summer months May to September with a maximum of occurrence in July and around 1500 Alaska Daylight Time as shown in the funnel cloud observational data. The observed funnel clouds are usually not associated with severe thunderstorms and do not occur with strong synoptic scale forcing. As such, it was hypothesized that local effects from sea breeze fronts and orographic circulations might be the main forcing. Operational soundings indicate that some, but not all funnel cloud events occurred under large Convective Available Potential Energy (greater than 500 J) and strong lowlevel wind shear. Funnel clouds were difficult to identify in routine operational Doppler weather radars because the funnel clouds display small cross-sectional area compared to the radar resolution. An algorithm to retrieve similar vertical profiles from the entire radiosonde data than those observed during documented funnel cloud events was developed. By using similarity between radiosonde profiles of days of the observed funnel clouds and the similar radiosonde profiles scanned over the years, an idea of funnel cloud or severe storm occurrence can be ascertained. The mechanisms for funnel cloud formation differ by region. In Interior Alaska, the Alaska Range’s katabatic slope winds and the Tanana Valley wind create the needed vorticity. Along the west coast of Alaska, air-sea interaction plays a role. In Cook Inlet, topography and land-sea play a role. All funnel cloud events have weak synoptic scale forcing.
    • Data analysis and data assimilation of Arctic Ocean observations

      Stroh, Jacob Nathaniel; Panteleev, Gleb; Mölders, Nicole; Weingartner, Thomas; Rhodes, John (2019-05)
      Arctic-region observations are sparse and represent only a small portion of the physical state of nature. It is therefore essential to maximize the information content of observations and bservation-conditioned analyses whenever possible, including the quantification of their accuracy. The four largely disparate works presented here emphasize observation analysis and assimilation in the context of the Arctic Ocean (AO). These studies focus on the relationship between observational data/products, numerical models based on physical processes, and the use of such data to constrain and inform those products/models to di_erent ends. The first part comprises Chapters 1 and 2 which revolve around oceanographic observations collected during the International Polar Year (IPY) program of 2007-2009. Chapter 1 validates pan- Arctic satellite-based sea surface temperature and salinity products against these data to establish important estimates of product reliability in terms of bias and bias-adjusted standard errors. It establishes practical regional reliability for these products which are often used in modeling and climatological applications, and provides some guidance for improving them. Chapter 2 constructs a gridded full-depth snapshot of the AO during the IPY to visually outline recent, previouslydocumented AO watermass distribution changes by comparing it to a historical climatology of the latter 20th century derived from private Russian data. It provides an expository review of literature documenting major AO climate changes and augments them with additional changes in freshwater distribution and sea surface height in the Chukchi and Bering Seas. The last two chapters present work focused on the application of data assimilation (DA) methodologies, and constitute the second part of this thesis focused on the synthesis of numerical modeling and observational data. Chapter 3 presents a novel approach to sea ice model trajectory optimization whereby spatially-variable sea ice rheology parameter distributions provide the additional model flexibility needed to assimilate observable components of the sea ice state. The study employs a toy 1D model to demonstrate the practical benefits of the approach and serves as a proof-of-concept to justify the considerable effort needed to extend the approach to 2D. Chapter 4 combines an ice-free model of the Chukchi Sea with a modified ensemble filter to develop a DA system which would be suitable for operational forecasting and monitoring the region in support of oil spill mitigation. The method improves the assimilation of non-Gaussian asynchronous surface current observations beyond the traditional approach.
    • Development of a parameterization for mesoscale hydrological modeling and application to landscape and climate change in the Interior Alaska boreal forest ecosystem

      Endalamaw, Abraham Melesse; Bolton, William R.; Young-Robertson, Jessica M.; Hinzman, Larry; Morton, Donald; Mölders, Nicole; Fochesatto, G. Javier (2017-08)
      The Interior Alaska boreal forest ecosystem is one of the largest ecosystems on Earth and lies between the warmer southerly temperate and colder Arctic regions. The ecosystem is underlain by discontinuous permafrost. The presence or absence of permafrost primarily controls water pathways and ecosystem composition. As a result, the region hosts two distinct ecotypes that transition over a very short spatial scale - often on the order of meters. Accurate mesoscale hydrological modeling of the region is critical as the region is experiencing unprecedented ecological and hydrological changes that have regional and global implications. However, accurate representation of the landscape heterogeneity and mesoscale hydrological processes has remained a big challenge. This study addressed this challenge by developing a simple landscape model from the hill-slope studies and in situ measurements over the past several decades. The new approach improves the mesoscale prediction of several hydrological processes including streamflow and evapotranspiration (ET). The impact of climate induced landscape change under a changing climate is also investigated. In the projected climate scenario, Interior Alaska is projected to undergo a major landscape shift including transitioning from a coniferous-dominated to deciduous-dominated ecosystem and from discontinuous permafrost to either a sporadic or isolated permafrost region. This major landscape shift is predicted to have a larger and complex impact in the predicted runoff, evapotranspiration, and moisture deficit (precipitation minus evapotranspiration). Overall, a large increase in runoff, evapotranspiration, and moisture deficit is predicted under future climate. Most hydrological climate change impact studies do not usually include the projected change in landscape into the model. In this study, we found that ignoring the projected ecosystem change could lead to an inaccurate conclusion. Hence, climate-induced vegetation and permafrost changes must be considered in order to fully account for the changes in hydrology.
    • Doppler sodar observations of the winds and structure in the lower atmosphere over Fairbanks, Alaska

      Kankanala, Pavan Kumar Reddy (2007-12)
      Fairbanks, Alaska (64°49ʹ N, 147°52ʹ W) experiences strong temperature inversions which when combined with the low wind speeds prevailing during the winter cause serious air pollution problems. The SODAR (Sound Detection And Ranging) or acoustic sounder is a very useful instrument for studying the lower atmosphere as it can continuously and reliably measure the vertical profiles of wind speed and direction,vertical motions, turbulence and the thermal structure in the lower part of the troposphere. A Doppler sodar was operated from December 2005 to April 2006 at the National Weather Service site in Fairbanks. The wind observations from the sodar indicate that the majority of the winds during the winter months were from the North, Northeast or the East, which is in good agreement with the radiosonde measurements and the long term trends in the wind patterns over Fairbanks area. Case studies were carried out using the sodar data depicting drainage winds, low-level jets, formation and breakup of inversions and estimation of the mixing layer height.
    • Emergent impacts of rapidly changing climate extremes in Alaska

      Lader, Rick T.; Walsh, John E.; Bhatt, Uma S.; Rupp, T. S.; Zhang, Xiangdong (2018-08)
      The frequency and intensity of certain extreme weather events in Alaska are increasing, largely due to climate warming from greenhouse gas emissions. Future projections indicate that these trends will continue, potentially leading to billions of dollars in climate-related damages this century. Expected damages arise from increases in extreme precipitation, severe wildfire, altered ocean chemistry, land subsidence from permafrost thaw, and coastal erosion. This dissertation applies new downscaled reanalysis and climate model simulations from the fifth phase of the Coupled Model Intercomparison Project to enhance current understanding of climate extremes in Alaska. Model output is analyzed for a historical period (1981-2010) and three projected periods (2011-2040, 2041-2070, 2071-2100) using representative concentration pathway 8.5. Unprecedented heat and precipitation are expected to occur when compared to the historical period. Maximum 1-day and consecutive 5-day precipitation amounts are expected to increase by 53% and 50%, respectively, and the number of summer days per year (Tmax > 25°C) increases from a statewide average of 1.5 from 1981-2010 to 29.7 for 2071-2100. Major alterations to the landscape of Alaska are anticipated due to a decreasing frequency of freezing temperatures. Growing season length extends by 48-87 days by 2071-2100 with the largest changes in northern Alaska. In contrast, projections indicate a reduced snow season length statewide and many locations in southwest Alaska no longer have continuous winter snow cover. Changes to these metrics indicate that a climate-warming signal emerges from the historical inter-annual variability, meaning that future distributions are entirely outside of those previously observed. The largest changes to extremes may be avoided by following a lower emissions trajectory, which would reduce the impacts and associated costs to maintain infrastructure and human health.