• On using numerical sea-ice prediction and indigenous observations to improve operational sea-ice forecasts during spring in the Bering Sea

      Deemer, Gregory Joseph; Bhatt, Uma; Eicken, Hajo; Hutchings, Jennifer; Danielson, Seth (2015-05)
      Impacts of a rapidly changing climate are amplified in the Arctic. The most notorious change has come in the form of record-breaking summertime sea-ice retreat. Larger areas of open water and a prolonged ice-free season create opportunity for some industries, but bring new challenges to indigenous populations that rely on sea-ice cover for subsistence. Observed and projected increases in Arctic maritime activities require accurate sea-ice forecasts on the weather timescale, which are currently lacking. Motivated by emerging needs, this study explores how new modeling developments and local-scale observations can contribute to improving sea-ice forecasts. The Arctic Cap Nowcast/Forecast System, a research sea-ice forecast model developed by the U.S. Navy, is evaluated for forecast skill. Forecasts of ice concentration, thickness, and drift speed produced by the model from April through June 2011 in the Bering Sea have been investigated to determine how the model performs relative to persistence and climatology. Results show that model forecasts can outperform forecasts based on climatology or persistence. However, predictive skill is less consistent during powerful, synoptic-scale events and near the Bering Slope. Forecast case studies in Western Alaska are presented. Community-based observations from recognized indigenous sea-ice experts have been analyzed to gauge the prospect of using local observations in the operational sea-ice monitoring and prediction process. Local observations are discussed in the context of cross-validating model guidance, data sources used in operational ice monitoring, and public sea-ice information products issued by the U.S. National Weather Service. Instrumentation for observing sea-ice and weather at the local scale was supplied to key observers. The instrumentation shows utility in the field and may help translate the context of indigenous observations and provide ground-truth data for use by forecasters.
    • An analysis of turbulent sensible heat fluxes within a heterogeneous black spruce boreal forest in Alaska

      Starkenburg, Derek P.; Fochesatto, Gilberto J.; Prakash, Anupma; Kane, Douglas L.; Gens, Rudiger; Cristóbal, Jordi (2015-05)
      Turbulent sensible heat fluxes within the heterogeneous canopy of a black spruce boreal forest in Interior Alaska are evaluated at three different scales in order to assess their spatial variability, and to determine the feasibility of upscaling locally measured flux values to the landscape scale for modeling applications and climate studies. The first evaluation is performed locally at a single micrometeorological tower in an area of the boreal forest with a mean canopy height of 4.7 m. The data were taken across winter, spring and summer of 2012 from two sonic anemometers, one below the canopy at 3 m above ground, and one above the canopy at 12 m above ground. A multiresolution analysis is used to isolate coherent structures from the turbulent temperature time series at both instruments. When mean global statistics of coherent structures are analyzed at the two levels independently, results show an average of 8 structures per period, a mean duration of 85 s, and a mean sensible heat flux contribution of 48%. A spectral version of the Stokes parameters is applied to the turbulent horizontal wind components to show that 31% of the coherent turbulent structures detected at 12 m, and 13% at 3 m, may be complicated by canopy waves due to the prevalence of stable flows at this high latitude location. A most remarkable finding is that less than 25% of the coherent structures detected at these two heights occur synchronously, which speaks robustly to the lack of flow interaction within only 9 vertical meters of the forest, and to the complexity of the vertical aggregation of sensible heat therein. The second evaluation quantifies differences in turbulent sensible heat fluxes horizontally between two micrometeorological towers 600 m apart, one in a denser canopy (DC) and the other in a sparser canopy (SC), but under approximately similar atmospheric boundary layer conditions. Results show that SC is ~ 3°C cooler and more stably stratified than DC during nighttime. This suggests that changes in the height and density of the canopy impact local temperature and stability regimes. Most importantly, the sensible heat flux at DC is greater during midday periods, with that difference exceeding 30% of the measured flux and over 30 W m⁻² in magnitude more than 60% of the time. This difference is the result of higher mechanical mixing due to the increased density of roughness elements at DC. Furthermore, the vertical distribution of turbulent heat fluxes verifies a maximum above the canopy crown when compared with the levels below and well above the canopy. These spatial variations of sensible heat flux result from the complex scale aggregation of energy fluxes over a heterogeneous canopy, and suggest that locally measured fluxes will likely differ from large-scale area averaged values. The third evaluation compares locally measured sensible heat fluxes from a sonic anemometer atop a 24 m micrometeorological tower to those derived from a large aperture scintillometer (LAS) whose beam is centered near the tower at an average height of 36 m above ground, and over a path length of 1423 m. This analysis focuses on unstable daytime periods from June, July and August of 2013. The daytime is defined as 0700-2000 Alaska Standard Time, since local sensible heat flux values derived from the sonic anemometer (HEC) are robust (above 50 W m⁻²) during this time, and since this time also agrees with the minima in the mean diurnal pattern of Cn² from the LAS. For daytime periods with robust sensible heat flux values, HEC and the large-scale flux from the LAS (HLAS) correlate with R² = 0.68, while HEC captures about 82% of HLAS on average. The magnitude of HEC and HLAS are both strongly sensitive to incoming solar radiation, with HLAS having a better correlation and regression slope, suggesting that the local measurements are adjusting also to surface and/or flow conditions above the heterogeneous canopy. Evaluation of the magnitude of the ratio of HEC/HLAS for days with varying amounts of solar radiation suggests that while radiation affects the magnitude of HEC and HLAS independently, it does not affect their ratio. For daytime periods with lower fluxes (HEC between 10 and 50 W m⁻²), HEC captures about 69% of HLAS on average. However, local and large-scale fluxes during this low flux regime correlate poorly with incoming solar radiation (R² = 0.42 for HLAS and R² = 0.15 for HEC), and with one another (R² = 0.27), suggesting that local heterogeneities are not well-integrated into the large-scale flux. Therefore, low flux periods should be considered separately for the purposes of upscaling local to landscape scale flux values in the boreal forest. For the high flux regime, a finer resolution of upscaling can be provided based on the mean diurnal pattern of HEC/HLAS and the Obukhov length (L). Namely, as the boundary layer becomes less unstable in late afternoon, HEC/HLAS increases, supporting that the eddy covariance technique can capture more of the large-scale flux when the boundary layer is more shear-driven (less buoyancy driven).
    • Theoretical investigations on strategies for sampling meteorological and chemical field quantities in smoke plumes using UAVs

      Butwin, Mary K.; Mölders, Nicole; Collins, Richard L.; Bhatt, Uma S. (2015-08)
      Wildfires emit large quantities of pollutants that decrease the air quality in the atmospheric boundary layer. Understanding the chemical makeup of a fire plume is beneficial for air quality studies and for air quality forecasting in communities. To be able to understand the chemical composition, Unmanned Aerial Vehicles (UAVs) should be flown into plumes with an air quality instrumental payload. Before such flights can be completed it is crucial that the flight paths will allow for a complete understanding of the chemical concentration distributions within the plume. To develop such a flight path, with respect to flight altitude, direction and speed the UAV should travel at for examining a wildfire plume in Interior Alaska, output from the Weather Research and Forecasting model coupled with Chemistry (WRF/Chem) was used and was considered to be the true atmospheric conditions over the UAV measurement domain. For this thesis simulations were for 3-10 August 2009 of the Alaska fire season, centered in Interior Alaska. Focus for the UAV study was on the smoke plumes from the Crazy Mountain Complex fires near Circle, AK. Based on the results from the comparison of different flight altitudes, sampling patterns, and speeds of the simulated UAV flights, recommendations can be made for the use of UAVs in a field campaign into a wildfire plume in Interior Alaska.
    • Investigation of thin midlevel ice clouds in the Arctic using calipso data and radiative transfer modeling

      Kayetha, Vinay Kumar; Collins, Richard; Meyer, Franz; Prakash, Anupma; Bhatt, Uma (2015-08)
      In this research we investigate the global occurrence and properties of optically thin midlevel ice clouds. These clouds are difficult to detect with passive radiometric techniques and are under-represented in current studies. We use the Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data set to identify thin midlevel ice clouds and determine their global occurrence and distribution. For the first time, we find that the global mean occurrence of these clouds is at least 4.5%, being at least 7.3% of all the tropospheric clouds detected at a horizontal scale of 10 km. Seasonally, these clouds are found most commonly in the polar regions. These clouds occur most commonly in the Arctic in winter and least commonly in the summer. In winter these clouds can occur up to 19% of the time. The occurrence of these clouds decreases with increasing spatial scale and are most commonly found at spatial scales of 25 km or less. We found five large distinct clouds over the Arctic and investigated them for their meteorological conditions and radiative effects. These thin midlevel ice clouds are formed along the frontal zones in weakly ascending air masses. Our model simulations show that thin midlevel ice clouds have a net warming effect on the surface of 23-48 W/m². We conclude that these clouds have a significant impact on the radiation budget in Arctic winters. Our study highlights the importance of active satellite-based remote sensing in globally detecting and characterizing optically thin clouds. Our estimates of occurrence and fraction of clouds represents a lower bound, as these clouds can be obscured by optically thicker clouds. The volume of measurements provided by the satellite allowed us to identify a small but consistent set of large clouds with which we could conduct a contemporary radiative analysis. These findings can be used to improve the representation of clouds and their impacts in regional and global climate models.
    • Using self-organizing maps to detail synoptic connections between climate indices and Alaska weather

      Winnan, Reynir C.; Bhatt, Uma S.; Collins, Richard L.; Walsh, John E.; Wackerbauer, Renate A. (2015-12)
      Seasonal forecasts for Alaska strongly depend on the phases of Pacific Decadal Oscillation (PDO), El Niño-Southern Oscillation (ENSO), and warm water in the North Pacific called the North Pacific Mode or more popularly the "Pacific blob." The canonical descriptions of these climate indices are based on seasonal averages, and anomalies that are based on a long-term mean. The patterns highlight general geographical placement and display a sharp contrast between opposing phases, but this may be misleading since seasonal averages hide much of the synoptic variability. Self-organizing maps (SOMs) are a way of grouping daily sea level pressure (SLP) patterns, over many time realizations into a specified set of maps (e.g. 35 maps) that describe commonly occurring patterns. This study uses the SOMs in the context of climate indices to describe the range of synoptic patterns that are relevant for Alaska. This study found that the patterns common during a given phase of the PDO include subtle differences that would result in Alaska weather that is very different from what is expected from the canonical PDO description, thus providing some explanation for recent studies that find the PDO link to Alaska climate is weakening. SOMs analysis is consistent with recent studies suggesting that the pattern responsible for the 2014 Pacific warm blob is linked to tropical sea-surface temperature (SST) forcing. An analysis of the summer SLP SOMs in the context of Alaska wildland fires was also conducted. This analysis identified several commonly occurring patterns during summers with large areas burned. These patterns are characterized by low pressure in the Bering Sea, which would be consistent with increased storm activity and thus an ignition source for the fires. Identifying synoptic patterns that occur during a particular phase of a teleconnection index contributes towards understanding the mechanisms of how these indices influence the weather and climate of Alaska.
    • Late quaternary and future biome simulations for Alaska and eastern Russia

      Hendricks, Amy S.; Walsh, John; Saito, Kazuyuki; Bigelow, Nancy; Bhatt, Uma (2016-05)
      Arctic biomes across a region including Alaska and Eastern Russia were investigated using the BIOME4 biogeochemical and biogeography vegetation model. This study investigated past (the last 21,000 years), present, and future vegetation distributions in the study area, using climate forcing from five CMIP5 models (CCSM4, GISS-E2-R, MIROC-ESM, MPI-ESM, and MRI-CGCM3). The present-day BIOME4 simulations were generally consistent with current vegetation observations in the study region characterized by evergreen and deciduous taiga and shrub tundras. Paleoclimatological simulations were compared with pollen data samples collected in the study region. Pre-industrial biome simulations are generally similar to the modern reconstruction but differ by having more shrub tundra in both Russia and Alaska to the north, as well as less deciduous taiga in Alaska. Pre-industrial simulations were in good agreement with the pollen data. Mid-Holocene simulations place shrub tundras along the Arctic coast, and in some cases along the eastern coast of Russia. Simulations for the Mid-Holocene are in good agreement with pollen-based distributions of biomes. Simulations for the Last Glacial Maximum (LGM) show that the Bering Land Bridge was covered almost entirely by cushion forb, lichen and moss tundra, shrub tundra, and graminoid tundra. Three out of the five models’ climate data produce evergreen and deciduous taiga in what is now southwestern Alaska, however the pollen data does not support this. The distributions of cushion forb, lichen, and moss tundra and graminoid tundra differ noticeably between models, while shrub tundra distributions are generally similar. Future simulations of BIOME4 based on the RCP8.5 climate scenario indicate a northward shift of the treeline and a significant areal decrease of shrub tundra and graminoid tundra regions in the 21st century. Intrusions of cool mixed, deciduous, and conifer forests above 60°N, especially in southwest Alaska, were notable. Across eastern Russia, deciduous taiga begins to overtake evergreen taiga, except along the coastal regions where evergreen taiga remains the favored biome.
    • Radar studies of turbulence and lidar studies of the nickel layer in the Arctic mesosphere

      Li, Jintai; Collins, Richard L.; Simpson, William R.; Newman, David E. (2016-05)
      This thesis presents studies of the Arctic middle atmosphere using Incoherent Scatter Radar (ISR) and resonance lidar at Poker Flat Research Range (PFRR), Chatanika, Alaska. The Poker Flat Incoherent Scatter Radar (PFISR) provides measurements of mesospheric turbulence and the resonance lidar provides measurements of mesospheric nickel layer. We develop retrieval and analysis techniques to determine the characteristics of the turbulence and the nickel layer. We present measurements of mesospheric turbulence with PFISR on 23 April 2008 and 18 February 2013. We characterize mesospheric turbulence in terms of the energy dissipation rate as a function of altitude and time on these days. We present an extensive analysis of the radar measurements to show that the use of high quality PFISR data and an accurate characterization of the geophysical conditions are essential to achieve accurate turbulent measurements. We find that the retrieved values of the energy dissipation rate vary significantly based on how the data is selected. We present measurements of mesospheric nickel layer with resonance lidar on the night of 27-28 November 2012 and 20-21 December 2012. We characterize the mesospheric nickel layer in terms of the nickel concentration as a function of altitude on these days. We find that our nickel concentrations are significantly higher than expected from studies of meteors. We present an extensive analysis of the lidar measurements to show that these measurements of unexpectedly high values of the nickel concentrations are accurate and not biased by the lidar measurements.
    • Rocket and lidar studies of waves and turbulence in the Arctic middle atmosphere

      Triplett, Colin Charles; Collins, Richard L.; Weingartner, Thomas; Newman, David; Lehmacher, Gerald; Bhatt, Uma S. (2016-08)
      This dissertation presents new studies of waves and turbulence in the Arctic middle atmosphere. The study has a primary focus on wintertime conditions when the largescale circulation of the middle atmosphere is disrupted by the breaking of planetary waves associated with sudden stratospheric warming (SSW) events. We used ongoing Rayleigh lidar measurements of density and temperature to conduct a multi-year study of gravity waves in the upper stratosphere-lower mesosphere (USLM) over Poker Flat Research Range (PFRR) at Chatanika, Alaska. We analyzed the night-to-night gravity wave activity in terms of the wind structure and the ageostrophy. We find that the weak winds during disturbed conditions block the vertical propagation of gravity waves into the mesosphere. The gravity wave activity is correlated with the altitudes where the winds are weakest. During periods of weak winds we find little correlation with ageostrophy. However, during periods of stronger winds we find the USLM gravity wave activity is correlated with the ageostrophy in the upper troposphere indicating that ageostrophy in this region is a source of the gravity waves. Inter-annually we find the wintertime gravity wave activity is correlated with the level of disturbance of the middle atmosphere, being reduced in those winters with a higher level of disturbance and weaker winds. We used rocket-borne ion gauges to measure turbulence in the wintertime middle atmosphere while documenting the larger meteorological context from Rayleigh lidar and satellites. This investigation of turbulence was called the Mesosphere-Lower Thermosphere Turbulence Experiment (MTeX). During MTeX we found a highly disturbed atmosphere associated with an SSW where winds were weak and gravity wave activity was low. We found low levels of turbulence in the upper mesosphere. The turbulence was primarily found in regions of convective instability in the topside of mesospheric inversion layers (MILs). The strongest and most persist turbulence was found in a MIL that is associated with the breaking of a monochromatic gravity wave. These MTeX observations indicate that turbulence is generated by gravity wave breaking as opposed to gravity wave saturation. These MTeX findings of low levels of turbulence are consistent with recent model studies of vertical transport during SSWs and support the view that eddy transport is not a dominant transport mechanism during SSWs.
    • Climatology and forcing mechanisms of funnel clouds in Alaska

      Edwin, Stanley G.; Mölders, Nicole; Bhatt, Uma S.; Collins, Richard L. (2016-08)
      There are no forecasting systems for funnel clouds for Alaska. The inability of forecasting is problematic because funnel clouds pose a threat to aviation, which serves as Alaska’s main form of transportation. Motivated by the lack of research on the formation of funnel clouds in Alaska, this research investigated characteristics of funnel clouds and atmospheric conditions under which funnel clouds form using operational Doppler weather radars and radiosonde soundings as well as synoptic weather maps. In Alaska, funnel clouds usually occur during the summer months May to September with a maximum of occurrence in July and around 1500 Alaska Daylight Time as shown in the funnel cloud observational data. The observed funnel clouds are usually not associated with severe thunderstorms and do not occur with strong synoptic scale forcing. As such, it was hypothesized that local effects from sea breeze fronts and orographic circulations might be the main forcing. Operational soundings indicate that some, but not all funnel cloud events occurred under large Convective Available Potential Energy (greater than 500 J) and strong lowlevel wind shear. Funnel clouds were difficult to identify in routine operational Doppler weather radars because the funnel clouds display small cross-sectional area compared to the radar resolution. An algorithm to retrieve similar vertical profiles from the entire radiosonde data than those observed during documented funnel cloud events was developed. By using similarity between radiosonde profiles of days of the observed funnel clouds and the similar radiosonde profiles scanned over the years, an idea of funnel cloud or severe storm occurrence can be ascertained. The mechanisms for funnel cloud formation differ by region. In Interior Alaska, the Alaska Range’s katabatic slope winds and the Tanana Valley wind create the needed vorticity. Along the west coast of Alaska, air-sea interaction plays a role. In Cook Inlet, topography and land-sea play a role. All funnel cloud events have weak synoptic scale forcing.
    • Development of a parameterization for mesoscale hydrological modeling and application to landscape and climate change in the Interior Alaska boreal forest ecosystem

      Endalamaw, Abraham Melesse; Bolton, William R.; Young-Robertson, Jessica M.; Hinzman, Larry; Morton, Donald; Mölders, Nicole; Fochesatto, G. Javier (2017-08)
      The Interior Alaska boreal forest ecosystem is one of the largest ecosystems on Earth and lies between the warmer southerly temperate and colder Arctic regions. The ecosystem is underlain by discontinuous permafrost. The presence or absence of permafrost primarily controls water pathways and ecosystem composition. As a result, the region hosts two distinct ecotypes that transition over a very short spatial scale - often on the order of meters. Accurate mesoscale hydrological modeling of the region is critical as the region is experiencing unprecedented ecological and hydrological changes that have regional and global implications. However, accurate representation of the landscape heterogeneity and mesoscale hydrological processes has remained a big challenge. This study addressed this challenge by developing a simple landscape model from the hill-slope studies and in situ measurements over the past several decades. The new approach improves the mesoscale prediction of several hydrological processes including streamflow and evapotranspiration (ET). The impact of climate induced landscape change under a changing climate is also investigated. In the projected climate scenario, Interior Alaska is projected to undergo a major landscape shift including transitioning from a coniferous-dominated to deciduous-dominated ecosystem and from discontinuous permafrost to either a sporadic or isolated permafrost region. This major landscape shift is predicted to have a larger and complex impact in the predicted runoff, evapotranspiration, and moisture deficit (precipitation minus evapotranspiration). Overall, a large increase in runoff, evapotranspiration, and moisture deficit is predicted under future climate. Most hydrological climate change impact studies do not usually include the projected change in landscape into the model. In this study, we found that ignoring the projected ecosystem change could lead to an inaccurate conclusion. Hence, climate-induced vegetation and permafrost changes must be considered in order to fully account for the changes in hydrology.
    • Global and local contributors to the historical and projected regional climate change on the North Slope of Alaska

      Cai, Lei; Alexeev, Vladimir A.; Arp, Christopher D.; Bhatt, Uma S.; Liljedahl, Anna K. (2018-05)
      This thesis includes four studies that explore and compare the impacts of four contributing factors resulting in regional climate change on the North Slope of Alaska based on a numerical simulation approach. These four contributing factors include global warming due to changes in radiative forcing, sea ice decline, earlier Arctic lake ice-off, and atmospheric circulation change over the Arctic. A set of dynamically downscaled regional climate products has been developed for the North Slope of Alaska over the period from 1950 up to 2100. A fine grid spacing (10 km) is employed to develop products that resolve detailed mesoscale features in the temperature and precipitation fields on the North Slope of Alaska. Processes resolved include the effects of topography on regional climate and extreme precipitation events. The Representative Concentration Pathway (RCP) 4.5 scenario projects lower rates of precipitation and temperature increase than RCP8.5 compared to the historical product. The increases of precipitation and temperature trends in the RCP8.5 projection are higher in fall and winter compared to the historical product and the RCP4.5 projection. The impacts of sea ice decline are addressed by conducting sensitivity experiments employing both an atmospheric model and a permafrost model. The sea ice decline impacts are most pronounced in late fall and early winter. The near surface atmospheric warming in late spring and early summer due to sea ice decline are projected to be stronger in the 21st century. Such a warming effect also reduces the total cloud cover on the North Slope of Alaska in summer by destabilizing the atmospheric boundary layer. The sea ice decline warms the atmosphere and the permafrost on the North Slope of Alaska less strongly than the global warming does, while it primarily results in higher seasonal variability of the positive temperature trend that is bigger in late fall and early winter than in other seasons. The ongoing and projected earlier melt of the Arctic lake ice also contributes to regional climate change on the Northern coast of Alaska, though only on a local and seasonal scale. Heat and moisture released from the opened lake surface primarily propagate downwind of the lakes. The impacts of the earlier lake ice-off on both the atmosphere and the permafrost underneath are comparable to those of the sea ice decline in late spring and early summer, while they are roughly six times weaker than those of sea ice decline in late fall and early winter. The permafrost warming resulted from the earlier lake ice-off is speculated to be stronger with more snowfall expected in the 21st century, while the overall atmospheric warming of global origin is speculated to continue growing. Two major Arctic summer-time climatic variability patterns, the Arctic Oscillation (AO) and the Arctic Dipole (AD), are evaluated in 12 global climate models in Coupled Model Intercomparison Program Phase 5 (CMIP5). A combined metric ranking approach ranks the models by the Pattern Correlation Coefficients (PCCs) and explained variances calculated from the model-produced summer AO and AD over the historical period. Higher-ranked models more consistently project a positive trend of the summer AO index and a negative trend of summer AD index in their RCP8.5 projections. Such long-term trends of large-scale climate patterns will inhibit the increase in air temperature while favoring the increase in precipitation on the North Slope of Alaska. In summary, this thesis bridges the gaps by quantifying the relative importance of multiple contributing factors to the regional climate change on the North Slope of Alaska. Global warming is the leading contributing factor, while other factors primarily contribute to the spatial and temporal asymmetries of the regional climate change. The results of this thesis lead to a better understanding of the physical mechanisms behind the climatic impacts to the hydrological and ecological changes of the North Slope of Alaska that have been become more severe and more frequent. They, together with the developed downscaling data products, serve as the climatic background information in such fields of study.
    • Hydroclimate in Eurasia from the Arctic to the Tropics

      Majhi, Ipshita; Bhatt, Uma S.; Zhang, Xiangdong; Molders, Nicole; Walsh, John; Krishnamurthy (2018-05)
      Hydrometeorology in Eurasia connects the Arctic with lower latitudes through exchanges in moisture and teleconnections influencing climate variability. This thesis investigates the role of dams on the Kolyma basin, of precipitation and temperature change on a pristine permafrost lined basin of the Yana, and of changing snow cover over Eurasia on the Indian Monsoon. These three pieces of work illustrate different aspects of a changing climate that impact Eurasian hydrometeorological variations. The Kolyma is one of the large rivers which flows into the Arctic Ocean where there has been a large winter increase and summer decrease in flow over the 1986-2000 period. Winter months are characterized by low flow while summer months by high flow. Reservoir regulation was identified as the main cause of changes in the discharge pattern, since water is released in winter for power generation and stored in summer for flood control. The overall discharge to the Arctic Ocean has decreased for Kolyma basin, despite the increase during winter. This study documents how human activities (particularly reservoirs) impact seasonal and regional hydrological variations. The Yana Basin is a small pristine basin that has experienced minimal human impact and is ideal for investigating the role of climate variability on discharge. The precipitation discharge and temperature discharge analysis for Ubileinaya suggests that increased precipitation and higher temperatures resulted in higher discharge, but other parameters also come into play since greater precipitation does not always yield higher discharge. Overall our analysis for this station has increased our understanding of natural basins and how the climate variables like precipitation and temperature play a role. Recent increases in May-June Indian monsoon rain fall were investigated in the context of Eurasian snow cover variations since the onset of the monsoon has long been linked to Himalayan snow cover. Himalayan snow cover and depth have decreased and this study argues that this is the driver of increased rainfall during May-June, the pre-monsoon and early monsoon period. In addition, there has been an increase in snow water equivalent in Northern part of Eurasia and decrease in Southern part, suggesting that the anomalies are large-scale. Storm track analysis reveals an increase in the number of storms in northern and a decrease in southern Eurasia. The large-scale Eurasian snow increases have been shown by other studies to be linked to Arctic sea ice decline. The direct linkage between fall Arctic sea ice decline and an increase in May-June Indian monsoon rainfall is proposed in this work but the exact climate mechanism is tenuous at this point. This study is focused on understanding changing Arctic rivers and the connection of the Arctic with the Indian monsoon. Our study has shed some light into the connection between the Arctic and the tropics. This study could benefit from modeling study where we could have case study with and without sea ice to understand better how that could impact the monsoon and the hydrological cycle in the present and the future. Better understanding of the mechanism would help us take steps towards better adaptation policies.
    • Emergent impacts of rapidly changing climate extremes in Alaska

      Lader, Rick T.; Walsh, John E.; Bhatt, Uma S.; Rupp, T. S.; Zhang, Xiangdong (2018-08)
      The frequency and intensity of certain extreme weather events in Alaska are increasing, largely due to climate warming from greenhouse gas emissions. Future projections indicate that these trends will continue, potentially leading to billions of dollars in climate-related damages this century. Expected damages arise from increases in extreme precipitation, severe wildfire, altered ocean chemistry, land subsidence from permafrost thaw, and coastal erosion. This dissertation applies new downscaled reanalysis and climate model simulations from the fifth phase of the Coupled Model Intercomparison Project to enhance current understanding of climate extremes in Alaska. Model output is analyzed for a historical period (1981-2010) and three projected periods (2011-2040, 2041-2070, 2071-2100) using representative concentration pathway 8.5. Unprecedented heat and precipitation are expected to occur when compared to the historical period. Maximum 1-day and consecutive 5-day precipitation amounts are expected to increase by 53% and 50%, respectively, and the number of summer days per year (Tmax > 25°C) increases from a statewide average of 1.5 from 1981-2010 to 29.7 for 2071-2100. Major alterations to the landscape of Alaska are anticipated due to a decreasing frequency of freezing temperatures. Growing season length extends by 48-87 days by 2071-2100 with the largest changes in northern Alaska. In contrast, projections indicate a reduced snow season length statewide and many locations in southwest Alaska no longer have continuous winter snow cover. Changes to these metrics indicate that a climate-warming signal emerges from the historical inter-annual variability, meaning that future distributions are entirely outside of those previously observed. The largest changes to extremes may be avoided by following a lower emissions trajectory, which would reduce the impacts and associated costs to maintain infrastructure and human health.
    • Modelling investigation of interaction between Arctic sea ice and storms: insights from case studies and climatological hindcast simulations

      Semenov, Alexander; Zhang, Xiangdong; Bhatt, Uma; Hutchings, Jennifer; Mölders, Nicole (2019-05)
      The goal of this study is to improve understanding of atmosphere, sea ice, and ocean interactions in the context of Arctic storm activities. The reduction of Arctic sea ice extent, increase in ocean water temperatures, and changes of atmospheric circulation have been manifested in the Arctic Ocean along with the large surface air temperature increase during recent decades. All of these changes may change the way in which atmosphere, sea ice, and ocean interact, which may in turn feedback to Arctic surface air warming. To achieve the goal, we employed an integrative approach including analysis of modeling simulation results and conducting specifically designed model sensitivity experiments. The novelty of this study is linking synoptic scale storms to large-scale changes in sea ice and atmospheric circulation. The models were used in this study range from the regional fully coupled Arctic climate model HIRHAM-NAOSIM to the ocean-sea ice component model of the Community Earth System Model CESM and the Weather Research and Forecasting (WRF) model. Analysis of HIRHAM-NAOSIM simulation outputs shows regionally dependent variability of storm count with a higher number of storms over the Atlantic side than over the Pacific side. High-resolution simulations also reproduce higher number of storms than lower resolution reanalysis dataset. This is because the high-resolution model may capture more shallow and small size storms. As an integrated consequence, the composite analysis shows that more numerous intense storms produce low-pressure systems centered over the Barents-Kara-Laptev seas and the Chukchi-East Siberian seas, leading to anomalous cyclonic circulation over the Atlantic Arctic Ocean and Pacific Arctic Ocean. Correspondingly, anomalous sea ice transport occurs, enhancing sea ice outflow out of the Barents-Kara-Laptev sea ice and weakening sea ice inflow into the Chukchi-Beaufort seas from the thick ice area north of the Canadian Archipelago. This change in sea ice transport causes a decrease in sea ice concentration and thickness in these two areas. However, energy budget analysis exhibits a decrease in downward net sea ice heat fluxes, reducing sea ice melt, when more numerous intense storms occur. This decrease could be attributed to increased cloudiness and destabilized atmospheric boundary layer associated with intense storms, which can result in a decrease in downward shortwave radiation and an increase in upward turbulent heat fluxes. The sea ice-ocean component CICE-POP of Community Earth System Model (CESM) was used to conduct sensitivity experiment to examine impacts of two selected storms on sea ice. CICE-POP is generally able to simulate the observed spatial distribution of the Arctic sea-ice concentration, thickness, and motion, and interannual variability of the Arctic sea ice area for the period 1979 to 2011. However, some biases still exit, including overestimated sea-ice drift speeds, particularly in the Transpolar Drift Stream, and overestimated sea-ice concentration in the Atlantic Arctic but slightly underestimated sea ice concentration in the Pacific Arctic. Analysis of CICE-POP sensitivity experiments suggests that dynamic forcing associated with the storms plays more important driving role in causing sea ice changes than thermodynamics does in the case of storm in March 2011, while both thermodynamic and dynamic forcings have comparable impacts on sea ice decrease in the case of the August 2012. In case of March 2011 storm, increased surface winds caused the reduction of sea ice area in the Barents and Kara Seas by forcing sea ice to move eastward. Sea ice reduction was primarily driven by mechanical processes rather than ice melting. On the contrary, the case study of August 2012 storm, that occurred during the Arctic summer, exemplified the case of equal contribution of mechanical sea ice redistribution of sea ice in the Chukchi - East Siberian - Beaufort seas and melt in sea ice reduction. To understand the impacts of the changed Arctic environment on storm dynamics, we carried out WRF model simulations for a selected Arctic storm that occurred in March 2011. Model output highlight the importance of both increased surface turbulent heat fluxes due to sea ice retreat and self-enhanced warm and moist air advection from the North Atlantic into the Arctic. These external forcing factor and internal dynamic process sustain and even strengthen atmospheric baroclinicity, supporting the storm to develop and intensify. Additional sensitivity experiments further suggest that latent heat release resulting from condensation/precipitation within the storm enhances baroclinicity aloft and, in turn, causes a re-intensification of the storm from its decaying phase.
    • Data analysis and data assimilation of Arctic Ocean observations

      Stroh, Jacob Nathaniel; Panteleev, Gleb; Mölders, Nicole; Weingartner, Thomas; Rhodes, John (2019-05)
      Arctic-region observations are sparse and represent only a small portion of the physical state of nature. It is therefore essential to maximize the information content of observations and bservation-conditioned analyses whenever possible, including the quantification of their accuracy. The four largely disparate works presented here emphasize observation analysis and assimilation in the context of the Arctic Ocean (AO). These studies focus on the relationship between observational data/products, numerical models based on physical processes, and the use of such data to constrain and inform those products/models to di_erent ends. The first part comprises Chapters 1 and 2 which revolve around oceanographic observations collected during the International Polar Year (IPY) program of 2007-2009. Chapter 1 validates pan- Arctic satellite-based sea surface temperature and salinity products against these data to establish important estimates of product reliability in terms of bias and bias-adjusted standard errors. It establishes practical regional reliability for these products which are often used in modeling and climatological applications, and provides some guidance for improving them. Chapter 2 constructs a gridded full-depth snapshot of the AO during the IPY to visually outline recent, previouslydocumented AO watermass distribution changes by comparing it to a historical climatology of the latter 20th century derived from private Russian data. It provides an expository review of literature documenting major AO climate changes and augments them with additional changes in freshwater distribution and sea surface height in the Chukchi and Bering Seas. The last two chapters present work focused on the application of data assimilation (DA) methodologies, and constitute the second part of this thesis focused on the synthesis of numerical modeling and observational data. Chapter 3 presents a novel approach to sea ice model trajectory optimization whereby spatially-variable sea ice rheology parameter distributions provide the additional model flexibility needed to assimilate observable components of the sea ice state. The study employs a toy 1D model to demonstrate the practical benefits of the approach and serves as a proof-of-concept to justify the considerable effort needed to extend the approach to 2D. Chapter 4 combines an ice-free model of the Chukchi Sea with a modified ensemble filter to develop a DA system which would be suitable for operational forecasting and monitoring the region in support of oil spill mitigation. The method improves the assimilation of non-Gaussian asynchronous surface current observations beyond the traditional approach.
    • Lidar and radar studies of turbulence, instabilities, and waves in the Arctic middle atmosphere

      Li, Jintai; Collins, Richard L.; Newman, David E.; Simpson, William R.; Thorsen, Denise L.; Williams, Bifford P. (2019-08)
      This dissertation presents new studies of gravity waves and turbulence in the Arctic middle atmosphere. The studies employ lidars and radar to characterize wave activity, instability and turbulence. In the lidar-based studies, we analyze turbulence and wave activity in the MLT based on lidar measurements of atmospheric temperature, density and sodium density, temperature and wind. This combination of measurements provides simultaneous characterization of both the atmospheric stability as well as material transport that allow us to estimate the eddy diffusion coefficient associated with turbulence. We extend the scope of previous studies by developing retrievals of potential temperature and sodium mixing ratio from the Rayleigh density temperature lidar and sodium resonance density lidar measurements. We find that the estimated values of turbulent eddy diffusion coefficients, K, of 400-2800 m²/s, are larger than typically reported (1-1000 m²/s) while the values of the energy dissipation rates, ε, of 5-20 mW/kg, are more typical (0.1-1000 mW/kg). We find that upwardly propagating gravity waves accompany the instabilities. In the presence of instabilities, we find that the gravity waves are dissipating as they propagate upward. We estimate the energy available for turbulence generation from the wave activities and estimate the possible turbulent energy dissipation rate, εGW. We find that the values of εGW are comparable to the values of ε. We find that the estimate of the depth of the layer of turbulence are critical to the estimate of the values of both ε and εGW. We find that our method tends to overestimate the depth, and thus overestimate the value of ε, and underestimate the value of εGW. In the radar-based study, we conduct a retrieval of turbulent parameters in the mesosphere based on a hypothesis test. We distinguish between the presence and absence of turbulence based on fitting Voigt-based and Lorentzian-based line shapes to the radar spectra. We also allow for the presence and absence of meteoric smoke particles (MSPs) in the radar spectra. We find examples of Poker Flat Incoherent Scatter Radar (PFISR) spectra showing both the presence and absence of turbulence and the presence and absence of MSPs in the upper mesosphere. Based on the analysis, we find that relatively few of the radar measurements yield significant measurements of turbulence. The significant estimates of turbulence have a strength that is over a factor of two larger than the average of the estimates from all of the radar measurements. The probability of true positives increases with the quality factor of the spectrum. The method yields significant measurements of turbulence with probabilities of true positives of greater than 30% and false positives less than 0.01%.
    • Impacts of storm on sea ice: from case study to climate scale analysis

      Peng, Liran; Zhang, Xiangdong; Collins, Richard; Fochesatto, Javier; Polyakov, Igor (2019-12)
      Recent studies have shown that intense and long-lasting storms potentially facilitate sea ice melting. Under the background of extratropical storm tracks poleward shift, significant reductions of Arctic sea ice coverage, and thinning of sea ice thickness over the last several decades, a better understanding on how storms impact sea ice mass balance is obviously of great importance to better predict future sea ice and the Arctic climate changes. This thesis presents a multi-scale study on how storms impact sea ice, consisting of three different parts of the effort. In the first part, we examined the impacts of the 2016 summer intense storm on sea ice changes over the Chukchi Sea using ship-borne observations. The results show that the intense storm can accelerate ice melt through enhanced upper-ocean mixing and upward heat transport. The satellite-observed long-term sea ice variations potentially can be impacted by many factors. In the second part, we first explore key physical processes controlling sea ice changes under no-storm condition. We examined and compared results from 25 sensitivity experiments using the NCAR's Community Earth System Model (CESM). We found that sea ice volume, velocity, and thickness are highly sensitive to perturbed air-ice momentum flux and sea ice strength. Increased sea ice strength or decreased air-ice momentum flux causes counter-clockwise rotation of the transpolar drift, resulting in an increase in sea ice export through Fram Strait and therefore reduction of the pan-Arctic sea ice thickness. Following four tracers released over the Arctic, we found the sea ice thickness distributions following those tracers are broader over the western Arctic and becomes narrower over the eastern Arctic. Additionally, thermodynamic processes are more dominant controlling sea ice thickness variations, especially over periphery seas. Over the eastern Arctic, dynamic processes play a more important role in controlling sea ice thickness variation. Previous studies show that thin ice responds to external perturbations much faster than the thick ice. Therefore, the impacts of storms on sea ice are expected to be different compared with the western/eastern Arctic and the entral/periphery seas. In the third part, we conduct a new composite analysis to investigate the storm impact on sea ice over seven regions for all storms spanning from 1979 to 2018. We focused on sea ice and storm changes over seven regions and found storms tend to have different short-term (two days before and after storm passage), mid-term (one-two weeks after storm passage), and long-term (from 1979 to 2018) impact on sea ice area over those regions. Over periphery seas (Chukchi, East Siberian, Laptev, Kara, and Barents Seas), storms lead to a short-term sea ice area decrease below the climatology, and a mid-term sea ice increase above the climatology. This behavior causes sea ice area to have a small correlation with the storm counts from 1979 to 2018, which suggest that storms have a limited long-term impact on sea ice area over periphery seas. Both the short term and mid-term storm impacts on sea ice area are confined within a 400 km radius circle with maximum impacts shown within a 200 km radius circle. Storms over the western Arctic (Chukchi, East Siberian, and Laptev Seas) have a stronger short-term and mid-term impact on sea ice area compared with the Eastern Arctic (Barents and Kara Seas). Storms over both Atlantic and Pacific entrance regions have a small impact on sea ice area, and storms over the Norwegian, Iceland, and Greenland Seas have the smallest impact on the sea ice area. Compared to the periphery seas, storms tend to have a stronger long-term impact on sea ice area over the central Arctic. The correlation coefficients between the storm count and sea ice area exceed 0.75.
    • Response of major modes of eastern Arctic Ocean variability to climate change

      Baumann, Till M.; Polyakov, Igor V.; Bhatt, Uma S.; Walsh, John E.; Weingartner, Thomas J. (2019-12)
      The Arctic Ocean plays a central role in ongoing climate change, with sea ice loss being the most prominent indicator. Recent observations showed that Atlantic inflows play an increasingly important role in the demise of sea ice. This encroaching atlantification of the eastern Arctic Ocean impacts the mean state and the variability of hydrography and current dynamics throughout the basin. Among the most energetic modes of variability are the seasonal cycle and high frequency semidiurnal (∼12-hourly) dynamics in the tidal and inertial frequency band. Limited observations indicated a substantial increase of both, hydrographic seasonal cycles as well as semidiurnal current dynamics in the eastern Arctic over the last decade. Using a uniquely comprehensive data set from an array of six moorings deployed across the eastern Eurasian Basin (EB) continental slope along the 125°E meridian between 2013 and 2015 within the NABOS project, we assess the state of hydrographic seasonal cycles in the eastern EB. Results show a complex pattern of seasonality with a remarkably strong (∆T=1.4°C), deep reaching (∼600 m) temperature signal over the continental slope and large-scale seasonal displacements of isopycnal interfaces. Seasonally changing background conditions are also the main source of variability of semidiurnal frequency band currents: During winter, vigorous baroclinic tidal currents whose amplitudes by far exceed predictions follow the vertical evolution of the pycnocline. During summer, extensive open-water periods additionally lead to strong wind-driven inertial currents in the upper ocean, routinely exceeding 30 cm/s far offshore in the deep basin. In order to obtain an Arctic-wide perspective on the impact of baroclinic tidal currents, a pan-Arctic tidal current atlas has been developed that synthesizes all available observations from the last 20 years. This atlas allows for in-depth studies of regional baroclinic tidal current variability as well as for validation of ocean and climate models, an essential step towards more accurate projections of the future Arctic Ocean state. Our findings from the eastern EB region already indicate a new, more dynamic state of the eastern Arctic Ocean with direct implications for the ecosystem and further sea-ice reduction.
    • Characteristics of Arctic storms and their influence on surface climate

      Yang, Yang; Zhang, Xiangdong; Danielson, Seth; Fochesatto, Javier; Hock, Regine (2020-05)
      Impacts of intense synoptic storms on Chukchi Sea and Beaufort Sea surface environmental conditions are examined, focusing on storms moving into the regions with northward and eastward pathways. Both storms alter the prevailing northeasterly wind to southerly and southwesterly wind. The storms moving from the East Siberian Sea that follow a west to east route are most active in summer and have the longest duration. Increasing southwesterly wind plays a key role in the decline of thin sea ice within the warm season. Storms traveling from the relatively warm Pacific Ocean into the Arctic over the Bering Strait are more common in winter, and are typically more intense than the summer storms that propagate west to east. Downward longwave radiation increases considerably with the passage of intense winter storms over the ice-covered Chukchi Sea; the sea ice concentration decreases accordingly. The impact of different sea ice conditions on Arctic synoptic storm systems in autumn are investigated in the North Pacific and Atlantic sectors, based on the ten ensembles of hindcast simulations from coupled regional climate model HIRHAM-NAOSIM. In both the Pacific and Atlantic sectors, greater transfers of heat and moisture fluxes from the open ocean to the atmosphere occur in low sea ice years than in high sea ice years. The largest increase of upward heat fluxes and baroclinicity occurs over the Laptev, southern Chukchi and Beaufort Seas in the Pacific sector, and over the southern Greenland and Barents Seas in the Atlantic sector. Enhanced baroclinity plays a dominant role in the development of intense storm systems. Therefore, storms in reduced sea ice years are more intense than in enhanced sea ice years in both Atlantic and Pacific sectors. The storm count also increases over locations exhibiting high baroclinicity. Sea ice volume anomalies are significantly correlated with synoptic storm counts based on maximum covariance analysis (MCA) leading modes of covariance between sea ice volume and storm count over Pacific and Atlantic sectors are identified respectively. The results are consistent with our findings in the composite analysis. In the Pacific sector, the first pattern of the MCA demonstrates that increasing storm counts over the Laptev Sea corresponds to decreasing sea ice volume over that region. In the Atlantic sector, the decrease of sea ice volume is highly correlated with decreasing storm counts over the northern Greenland Sea. Connection of storm activity over the North Pacific Ocean with the tropical stratosphere quasi-biennial oscillation (QBO) is investigated following a composite analysis of intense storm vertical cross sections. An observed stronger potential vorticity anomaly of intense storms is associated with the QBO west phase and results in enhanced warm air advection near the surface. A warm core structure forms over the east or northeast direction relative to the surface low center, which bows the isentropes downward. Upward motion following the isentropes reduces the surface low pressure, which in turn, facilitate storms to keep propagating in east and northeast directions. Under the QBO east phase, a weak surface warm core forms to the southeast of the storm center, resulting in a slow development of the storms, and these storms tend to move southeastward.
    • Lidar and satellite studies of noctilucent clouds over Alaska

      Alspach, Jennifer H.; Collins, Richard; Bossert, Katrina; Thorsen, Denise; Fochesatto, Javier (2020-05)
      This thesis presents studies of noctilucent clouds (NLCs) occurring in the summer polar mesosphere over Alaska. Lidar observations of NLCs conducted at Poker Flat Research Range in Chatanika, Alaska (65° N, 147° W) from 1998-2019 are analyzed. The NLCs detected by lidar are characterized in terms of their brightness properties and duration. NLCs were detected on ~51% of the nights when lidar observations have been conducted during NLC season. The brighter NLCs are found to exist at lower altitudes, indicating a growth-sedimentation mechanism. Cloud Imaging and Particle Size (CIPS) data from the Aeronomy of Ice in the Mesosphere (AIM) satellite is used to examine NLC occurrence and brightness over the Alaska region (60-70° N, 130-170° W). In general, high frequency and brightness in the CIPS data corresponds to positive detections of NLCs by the lidar. Microwave Limb Sounder (MLS) temperature and water vapor data from the Aura satellite is used to investigate the meteorological environment of the NLCs observed by lidar at Chatanika. The occurrence of NLCs at Chatanika is found to be driven by the temperature relative to the frost point. Low temperatures relative to the frost point (> 4 K below) correspond to observations when NLCs were present. High temperatures relative to the frost point (> 8 K above) correspond to observations when NLCs were absent. The MLS data is also used to investigate the stability of an ice cloud at different latitudes (64.7°-70.3° N) relative to the equilibrium water vapor mixing ratio. The stability study suggests that the weakest NLCs detected by lidar at Chatanika were in subsaturated conditions, and it is likely that the NLCs formed over several hundred kilometers to the north of Chatanika. The Rayleigh three-channel receiver system was used to conduct NLC measurements during 2019. A technical overview of the three-channel system and the density and temperature retrieval methods is presented at the end of the thesis using observations from the winter of 2018 and the summer of 2019.