• Analysis of low-frequency seismic signals generated during a multiple-iceberg calving event at Jakobshavn Isbræ, Greenland

      Walter, Fabian; Amundson, Jason M.; O'Neel, Shad; Truffer, Martin; Fahnestock, Mark; Fricker, Helen A. (American Geophysical Union, 2012-03-27)
      We investigated seismic signals generated during a large-scale, multiple iceberg calving event that occurred at Jakobshavn Isbræ, Greenland, on 21 August 2009. The event was recorded by a high-rate time-lapse camera and five broadband seismic stations located within a few hundred kilometers of the terminus. During the event two full-glacier-thickness icebergs calved from the grounded (or nearly grounded) terminus and immediately capsized; the second iceberg to calve was two to three times smaller than the first. The individual calving and capsize events were well-correlated with the radiation of low-frequency seismic signals (<0.1 Hz) dominated by Love and Rayleigh waves. In agreement with regional records from previously published ‘glacial earthquakes’, these low-frequency seismic signals had maximum power and/or signal-to-noise ratios in the 0.05–0.1 Hz band. Similarly, full waveform inversions indicate that these signals were also generated by horizontal single forces acting at the glacier terminus. The signals therefore appear to be local manifestations of glacial earthquakes, although the magnitudes of the signals (twice-time integrated force histories) were considerably smaller than previously reported glacial earthquakes. We thus speculate that such earthquakes may be a common, if not pervasive, feature of all full-glacier-thickness calving events from grounded termini. Finally, a key result from our study is that waveform inversions performed on low-frequency, calving-generated seismic signals may have only limited ability to quantitatively estimate mass losses from calving. In particular, the choice of source time function has little impact on the inversion but dramatically changes the earthquake magnitude. Accordingly, in our analysis, it is unclear whether the smaller or larger of the two calving icebergs generated a larger seismic signal.
    • Dynamic jamming of iceberg-choked fjords

      Peters, Ivo R.; Amundson, Jason M.; Cassotto, Ryan; Fahnestock, Mark; Darnell, Kristopher N.; Truffer, Martin; Zhang, Wendy W. (American Geophysical Union, 2015-02-02)
      We investigate the dynamics of ice mélange by analyzing rapid motion recorded by a time-lapse camera and terrestrial radar during several calving events that occurred at Jakobshavn Isbræ, Greenland. During calving events (1) the kinetic energy of the ice mélange is 2 orders of magnitude smaller than the total energy released during the events, (2) a jamming front propagates through the ice mélange at a rate that is an order of magnitude faster than the motion of individual icebergs, (3) the ice mélange undergoes initial compaction followed by slow relaxation and extension, and (4) motion of the ice mélange gradually decays before coming to an abrupt halt. These observations indicate that the ice mélange experiences widespread jamming during calving events and is always close to being in a jammed state during periods of terminus quiescence. We therefore suspect that local jamming influences longer timescale ice mélange dynamics and stress transmission.
    • Non-linear glacier response to calving events, Jakobshavn Isbræ, Greenland

      Cassoto, Ryan; Fahnestock, Mark; Amundson, Jason M.; Truffer, Martin; Boettcher, Margaret S.; De La Pena, Santiago; Howat, Ian (International Glaciological Society, 2018-11-29)
      Jakobshavn Isbræ, a tidewater glacier that produces some of Greenland’s largest icebergs and highest speeds, reached record-high flow rates in 2012 (Joughin and others, 2014). We use terrestrial radar interferometric observations from August 2012 to characterize the events that led to record-high flow. We find that the highest speeds occurred in response to a small calving retreat, while several larger calving events produced negligible changes in glacier speed. This non-linear response to calving events suggests the terminus was close to flotation and therefore highly sensitive to terminus position. Our observations indicate that a glacier’s response to calving is a consequence of two competing feedbacks: (1) an increase in strain rates that leads to dynamic thinning and faster flow, thereby promoting desta- bilization, and (2) an increase in flow rates that advects thick ice toward the terminus and promotes restabilization. The competition between these feedbacks depends on temporal and spatial variations in the glacier’s proximity to flotation. This study highlights the importance of dynamic thinning and advective processes on tidewater glacier stability, and further suggests the latter may be limiting the current retreat due to the thick ice that occupies Jakobshavn Isbræ’s retrograde bed.
    • Observing calving-generated ocean waves with coastal broadband seismometers, Jakobshavn Isbræ, Greenland

      Amundson, Jason M.; Clinton, John F.; Fahnestock, Mark; Truffer, Martin; Luthi, Martin P.; Motyka, Roman J. (International Glaciological Society, 2012)
      We use time-lapse photography, MODIS satellite imagery, ocean wave measurements and regional broadband seismic data to demonstrate that icebergs that calve from Jakobshavn Isbræ, Greenland, can generate ocean waves that are detectable over 150 km from their source. The waves, which are recorded seismically, have distinct spectral peaks, are not dispersive and persist for several hours. On the basis of these observations, we suggest that calving events at Jakobshavn Isbræ can stimulate seiches, or basin eigenmodes, in both Ilulissat Icefjord and Disko Bay. Our observations furthermore indicate that coastal, land-based seismometers located near calving termini (e.g. as part of the new Greenland Ice Sheet Monitoring Network (GLISN)) can aid investigations into the largely unexplored, oceanographic consequences of iceberg calving.
    • Outlet glacier response to forcing over hourly to interannual timescales, Jakobshavn Isbræ, Greenland

      Podrasky, David; Truffer, Martin; Fahnestock, Mark; Amundson, Jason M.; Cassoto, Ryan; Joughin, Ian (International Glaciological Society, 2012-09-07)
      The loss of the floating ice tongue on Jakobshavn Isbræ, Greenland, in the early 2000s has been concurrent with a pattern of thinning, retreat and acceleration leading to enhanced contribution to global sea level. These changes on decadal timescales have been well documented. Here we identify how the glacier responds to forcings on shorter timescales, such as from variations in surface melt, the drainage of supraglacial lakes and seasonal fluctuations in terminus position. Ice motion and surface melt were monitored intermittently from 2006 to 2008. Dual-frequency GPS were deployed 20–50 km upstream of the terminus along the glacier center line. Gaps in surface melt measurements were filled using a temperature-index model of ablation driven by surface air temperatures recorded during the same time period. Our results corroborate the premise that the primary factors controlling speeds on Jakobshavn Isbræ are terminus position and geometry. We also observe that surface speeds demonstrate a complex relationship with meltwater input: on diurnal timescales, velocities closely match changes in water input; however, on seasonal timescales a longer, more intense melt season was observed to effectively reduce the overall ice flow of the glacier for the whole year.
    • Rapid submarine melting driven by subglacial discharge, LeConte Glacier, Alaska

      Motyka, R. J.; Dryer, William P.; Amundson, Jason M.; Truffer, Martin; Fahnestock, Mark (American Geophysical Union, 2013-09-27)
      We show that subglacial freshwater discharge is the principal process driving high rates of submarine melting at tidewater glaciers. This buoyant discharge draws in warm seawater, entraining it in a turbulent upwelling flow along the submarine face that melts glacier ice. To capture the effects of subglacial discharge on submarine melting, we conducted 4 days of hydrographic transects during late summer 2012 at LeConte Glacier, Alaska. A major rainstorm allowed us to document the influence of large changes in subglacial discharge. We found strong submarine melt fluxes that increased from 9.1 ± 1.0 to 16.8 ± 1.3 m d1 (ice face equivalent frontal ablation) as a result of the rainstorm. With projected continued global warming and increased glacial runoff, our results highlight the direct impact that increases in subglacial discharge will have on tidewater outlet systems. These effects must be considered when modeling glacier response to future warming and increased runoff.
    • Seasonal and interannual variations in ice melange and its impact on terminus stability, Jakobshavn Isbræ, Greenland

      Cassotto, Ryan; Fahnestock, Mark; Amundson, Jason M.; Truffer, Martin; Joughin, Ian (International Glaciological Society, 2014-09-29)
      We used satellite-derived surface temperatures and time-lapse photography to infer temporal variations in the proglacial ice melange at Jakobshavn Isbræ, a large and rapidly retreating outlet glacier in Greenland. Freezing of the melange-covered fjord surface during winter is indicated by a decrease in fjord surface temperatures and is associated with (1) a decrease in ice melange mobility and (2) a drastic reduction in iceberg production. Vigorous calving resumes in spring, typically abruptly, following the steady up-fjord retreat of the sea-ice/ice-melange margin. An analysis of pixel displacement from time-lapse imagery demonstrates that melange motion increases prior to calving and subsequently decreases following several events. We find that secular changes in ice melange extent, character and persistence can influence iceberg calving, and therefore glacier dynamics over daily-to-monthly timescales, which, if sustained, will influence the mass balance of an ice sheet.