• MABEL photon-counting laser altimetry data in Alaska for ICESat-2 simulations and development

      Brunt, Kelly M.; Neumann, Thomas A.; Amundson, Jason M.; Kavanaugh, Jeffrey L.; Moussavi, Mahsa S.; Walsh, Kaitlin M.; Cook, William B.; Markus, Thorsten (Copernicus Publications on behalf of the European Geosciences Union, 2016-08-10)
      Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) is scheduled to launch in late 2017 and will carry the Advanced Topographic Laser Altimeter System (ATLAS) which is a photon-counting laser altimeter and represents a new approach to satellite determination of surface elevation. Given the new technology of ATLAS, an airborne instrument, the Multiple Altimeter Beam Experimental Lidar (MABEL), was developed to provide data needed for satellite-algorithm development and ICESat-2 error analysis. MABEL was deployed out of Fairbanks, Alaska, in July 2014 to provide a test dataset for algorithm development in summer conditions with water-saturated snow and ice surfaces. Here we compare MABEL lidar data to in situ observations in Southeast Alaska to assess instrument performance in summer conditions and in the presence of glacier surface melt ponds and a wet snowpack. Results indicate the following: (1) based on MABEL and in situ data comparisons, the ATLAS 90m beam-spacing strategy will provide a valid assessment of across-track slope that is consistent with shallow slopes (< 1) of an ice-sheet interior over 50 to 150m length scales; (2) the dense along-track sampling strategy of photon counting systems can provide crevasse detail; and (3) MABEL 532 nm wavelength light may sample both the surface and subsurface of shallow (approximately 2m deep) supraglacial melt ponds. The data associated with crevasses and melt ponds indicate the potential ICESat-2 will have for the study of mountain and other small glaciers.