• Seasonal and interannual variations in ice melange and its impact on terminus stability, Jakobshavn Isbræ, Greenland

      Cassotto, Ryan; Fahnestock, Mark; Amundson, Jason M.; Truffer, Martin; Joughin, Ian (International Glaciological Society, 2014-09-29)
      We used satellite-derived surface temperatures and time-lapse photography to infer temporal variations in the proglacial ice melange at Jakobshavn Isbræ, a large and rapidly retreating outlet glacier in Greenland. Freezing of the melange-covered fjord surface during winter is indicated by a decrease in fjord surface temperatures and is associated with (1) a decrease in ice melange mobility and (2) a drastic reduction in iceberg production. Vigorous calving resumes in spring, typically abruptly, following the steady up-fjord retreat of the sea-ice/ice-melange margin. An analysis of pixel displacement from time-lapse imagery demonstrates that melange motion increases prior to calving and subsequently decreases following several events. We find that secular changes in ice melange extent, character and persistence can influence iceberg calving, and therefore glacier dynamics over daily-to-monthly timescales, which, if sustained, will influence the mass balance of an ice sheet.
    • Seismic Tremor Reveals Spatial Organization and Temporal Changes of Subglacial Water System

      Vore, Margot E.; Bartholomaus, Timothy, C.; Winberry, J. Paul; Walter, Jacob I.; Amundson, Jason M. (American Geophysical Union, 2019-02-09)
      Subglacial water flow impacts glacier dynamics and shapes the subglacial environment. However, due to the challenges of observing glacier beds, the spatial organization of subglacial water systems and the time scales of conduit evolution and migration are largely unknown. To address these questions, we analyze 1.5‐ to 10‐Hz seismic tremor that we associate with subglacial water flow, that is, glaciohydraulic tremor, at Taku Glacier, Alaska, throughout the 2016 melt season. We use frequency‐dependent polarization analysis to estimate glaciohydraulic tremor propagation direction (related to the subglacial conduit location) and a degree day melt model to monitor variations in melt‐water input. We suggest that conduit formation requires sustained water input and that multiconduit flow paths can be distinguished from single‐conduit flow paths. Theoretical analysis supports our seismic interpretations that subglacial discharge likely flows through a single‐conduit in regions of steep hydraulic potential gradients but may be distributed among multiple conduits in regions with shallower potential gradients. Seismic tremor in regions with multiple conduits evolves through abrupt jumps between stable configurations that last 3–7 days, while tremor produced by single‐conduit flow remains more stationary. We also find that polarized glaciohydraulic tremor wave types are potentially linked to the distance from source to station and that multiple peak frequencies propagate from a similar direction. Tremor appears undetectable at distances beyond 2–6 km from the source. This new understanding of the spatial organization and temporal development of subglacial conduits informs our understanding of dynamism within the subglacial hydrologic system.
    • Subglacial discharge at tidewater glaciers revealed by seismic tremor

      Bartholomaus, Timothy C.; Amundson, Jason M.; Walter, Jacob I.; O'Neel, Shad; West, Michael E.; Larsen, Christopher F. (American Geophysical Union, 2015-08-10)
      Subglacial discharge influences glacier basal motion and erodes and redeposits sediment. At tidewater glacier termini, discharge drives submarine terminus melting, affects fjord circulation, and is a central component of proglacial marine ecosystems. However, our present inability to track subglacial discharge and its variability significantly hinders our understanding of these processes. Here we report observations of hourly to seasonal variations in 1.5–10 Hz seismic tremor that strongly correlate with subglacial discharge but not with basal motion, weather, or discrete icequakes. Our data demonstrate that vigorous discharge occurs from tidewater glaciers during summer, in spite of fast basal motion that could limit the formation of subglacial conduits, and then abates during winter. Furthermore, tremor observations and a melt model demonstrate that drainage efficiency of tidewater glaciers evolves seasonally. Glaciohydraulic tremor provides a means by which to quantify subglacial discharge variations and offers a promising window into otherwise obscured glacierized environments.
    • Subseasonal changes observed in subglacial channel pressure, size, and sediment transport

      Gimbert, Florent; Tsai, Victor C.; Amundson, Jason M.; Bartholomaus, Timothy, C.; Walter, Jacob I. (American Geophysical Union, 2016-04-07)
      Water that pressurizes the base of glaciers and ice sheets enhances glacier velocities and modulates glacial erosion. Predicting ice flow and erosion therefore requires knowledge of subglacial channel evolution, which remains observationally limited. Here we demonstrate that detailed analysis of seismic ground motion caused by subglacial water flow at Mendenhall Glacier (Alaska) allows for continuous measurement of daily to subseasonal changes in basal water pressure gradient, channel size, and sediment transport. We observe intermittent subglacial water pressure gradient changes during the melt season, at odds with common assumptions of slowly varying, low-pressure channels. These observations indicate that changes in channel size do not keep pace with changes in discharge. This behavior strongly affects glacier dynamics and subglacial channel erosion at Mendenhall Glacier, where episodic periods of high water pressure gradients enhance glacier surface velocity and channel sediment transport by up to 30% and 50%, respectively. We expect the application of this framework to future seismic observations acquired at glaciers worldwide to improve our understanding of subglacial processes.
    • Testing a glacial erosion rule using hang heights of hanging valleys, Jasper National Park, Alberta, Canada

      Amundson, Jason M.; Iverson, N. R. (American Geophysical Union, 2006)
      In most models of glacial erosion, glacier sliding velocity is hypothesized to control rates of bedrock erosion. If this hypothesis is correct, then the elevation difference between hanging and trunk valley floors, the hang height, should be dictated by the relative sliding velocities of the glaciers that occupied these valleys. By considering sliding velocity to be proportional to balance velocity and using mass continuity, hang height is expressed in terms of glacier catchment areas, slopes, and widths, which can be estimated for past glaciers from the morphology of glacial valleys. These parameters were estimated for 46 hanging valleys and their trunk valleys in three adjacent regions of Jasper National Park. The variability in valley morphology can account for 55–85% of the hang height variability if erosion rate scales with balance velocity raised to a power of 1/3. This correspondence is in spite of spatial variations in glaciation duration, snow accumulation rates, and other variables that likely affected hang heights but cannot be readily estimated and so are not included in our formulation. Thus it appears that balance velocity, and by extension, sliding velocity if the two are proportional, may be a reasonable control variable for assessing erosion rate.
    • Time-dependent basal stress conditions beneath Black Rapids Glacier, Alaska, USA, inferred from measurements of ice deformation and surface motion

      Amundson, Jason M.; Truffer, Martin; Luthi, Martin P. (International Glaciological Society, 2006-06-23)
      Observations of surface motion and ice deformation from 2002–03 were used to infer mean stress fields in a cross-section of Black Rapids Glacier, Alaska, USA, over seasonal timescales. Basal shear stresses in a well-defined zone north of the center line (orographic left) were approximately 7% and 16% lower in spring and summer, respectively, than in winter. Correspondingly higher stresses were found near the margins. These changes in the basal shear stress distribution were sufficiently large to cause mean surface velocities to be 1.2 and 1.5 times larger in spring and summer than in winter. These results were inferred with a simple inverse finite-element flow model that can successfully reproduce bulk surface velocities and tiltmeter data. Stress redistribution between the well-defined zone and the margins may also occur over much shorter time periods as a result of rapidly changing basal conditions (ice–bed decoupling or enhanced till deformation), thereby causing large variations in surface velocity and strongly influencing the glacier’s net motion during summer.
    • Tracking icebergs with time-lapse photography and sparse optical flow, LeConte Bay, Alaska, 2016–2017

      Kienholtz, Christian; Amundson, Jason M.; Motyka, Roman J.; Jackson, Rebecca H.; Mickett, John B.; Sutherland, David A.; Nash, Jonathan D.; Winters, Dylan S.; Dryer, William P.; Truffer, Martin (International Glaciological Society, 2019-03-07)
      We present a workflow to track icebergs in proglacial fjords using oblique time-lapse photos and the Lucas-Kanade optical flow algorithm. We employ the workflow at LeConte Bay, Alaska, where we ran five time-lapse cameras between April 2016 and September 2017, capturing more than 400 000 photos at frame rates of 0.5–4.0 min−1 . Hourly to daily average velocity fields in map coordinates illustrate dynamic currents in the bay, with dominant downfjord velocities (exceeding 0.5 m s−1 intermittently) and several eddies. Comparisons with simultaneous Acoustic Doppler Current Profiler (ADCP) measurements yield best agreement for the uppermost ADCP levels (∼ 12 m and above), in line with prevalent small icebergs that trace near-surface currents. Tracking results from multiple cameras compare favorably, although cameras with lower frame rates (0.5 min−1 ) tend to underestimate high flow speeds. Tests to determine requisite temporal and spatial image resolution confirm the importance of high image frame rates, while spatial resolution is of secondary importance. Application of our procedure to other fjords will be successful if iceberg concentrations are high enough and if the camera frame rates are sufficiently rapid (at least 1 min−1 for conditions similar to LeConte Bay).
    • A unifying framework for iceberg-calving models

      Amundson, Jason M.; Truffer, Martin (International Glaciological Society, 2010-07-09)
      We propose a general framework for iceberg-calving models that can be applied to any calving margin. The framework is based on mass continuity, the assumption that calving rate and terminus velocity are not independent and the simple idea that terminus thickness following a calving event is larger than terminus thickness at the event onset. The theoretical, near steady-state analysis used to support and analyze the framework indicates that calving rate is governed, to first order, by ice thickness, thickness gradient, strain rate, mass-balance rate and backwards melting of the terminus; the analysis furthermore provides a physical explanation for a previously derived empirical relationship for ice-shelf calving (Alley and others, 2008). In the calving framework the pre- and post-calving terminus thicknesses are given by two unknown but related functions. The functions can vary independently of changes in glacier flow and geometry, and can therefore account for variations in calving behavior due to external forcings and/or self-sustaining calving processes (positive feedbacks). Although the calving framework does not constitute a complete calving model, any thickness-based calving criterion can easily be incorporated into the framework. The framework should be viewed as a guide for future attempts to parameterize calving.