• A geostatistical model based on Brownian motion to Krige regions in R2 with irregular boundaries and holes

      Bernard, Jordy; McIntyre, Julie; Barry, Ron; Goddard, Scott (2019-05)
      Kriging is a geostatistical interpolation method that produces predictions and prediction intervals. Classical kriging models use Euclidean (straight line) distance when modeling spatial autocorrelation. However, for estuaries, inlets, and bays, shortest-in-water distance may capture the system’s proximity dependencies better than Euclidean distance when boundary constraints are present. Shortest-in-water distance has been used to krige such regions (Little et al., 1997; Rathbun, 1998); however, the variance-covariance matrices used in these models have not been shown to be mathematically valid. In this project, a new kriging model is developed for irregularly shaped regions in R 2 . This model incorporates the notion of flow connected distance into a valid variance-covariance matrix through the use of a random walk on a lattice, process convolutions, and the non-stationary kriging equations. The model developed in this paper is compared to existing methods of spatial prediction over irregularly shaped regions using water quality data from Puget Sound.