• Tsunami runup in U and V shaped bays

      Garayshin, Viacheslav Valer'evich; Гарайшин, Вячеслав Валерьевич; Rybkin, Alexei; Rhodes, John; Nicolsky, Dmitry (2013-08)
      Tsunami runup can be effectively modeled using the shallow water wave equations. In 1958 Carrier and Greenspan in their work "Water waves of finite amplitude on a sloping beach" used this system to model tsunami runup on a uniformly sloping plane beach. They linearized this problem using a hodograph type transformation and obtained the Klein-Gordon equation which could be explicitly solved by using the Fourier-Bessel transform. In 2011, Efim Pelinovsky and Ira Didenkulova in their work "Runup of Tsunami Waves in U-Shaped Bays" used a similar hodograph type transformation and linearized the tsunami problem for a sloping bay with parabolic cross-section. They solved the linear system by using the D'Alembert formula. This method was generalized to sloping bays with cross-sections parameterized by power functions. However, an explicit solution was obtained only for the case of a bay with a quadratic cross-section. In this paper we will show that the Klein-Gordon equation can be solved by a spectral method for any inclined bathymetry with power function for any positive power. The result can be used to estimate tsunami runup in such bays with minimal numerical computations. This fact is very important because in many cases our numerical model can be substituted for fullscale numerical models which are computationally expensive, and time consuming, and not feasible to investigate tsunami behavior in the Alaskan coastal zone, due to the low population density in this area