Now showing items 21-40 of 91

    • Dependence of the ionospheric convection pattern on the conductivity and the southward IMF

      Shue, Jih-Hong; Kan, J. R.; Akasofu, S.-I.; Biswas, N. N.; Rees, M. H.; Weimer, D. R. (1993)
      Electric field measurements from the DE-2 satellite were used to determine the location of the convection reversal boundary and the potential around this boundary under a combination of interplanetary magnetic field (IMF) and auroral electrojet conditions. The electric potential is obtained by the integration of the electric fields. The convection reversal boundary is defined in this study as where the potential has its absolute maximum and minimum values. The data were sorted into 18 categories according to two levels of the negative IMF $B\sb{z},$ three ranges of IMF $B\sb{y},$ and two substorm phases. The data were fit with both continuous and discontinuous boundaries to get a functional representation of boundary potentials and locations. A simple model is constructed by solving the Laplace's equation in order to illustrate the obtained boundary potentials and locations. The results show that the enhanced electric field in the midnight sector is associated with an intense westward electrojet current. It can also be seen that the convection reversal boundary is found to be discontinuous near midnight. The discontinuous convection reversal boundary on the dayside is related to the merging near dayside cusp region. The discontinuous convection reversal boundary on the nightside is related to the conductivity enhancement. The intrusion of the dawn cell into the dusk cell is due to nonuniformity of the Hall conductivity in the ionosphere. Another model is constructed by solving the current continuity equation with field-aligned current and nonuniform conductivity added. It can be found that a secondary convection reversal, which is detached from the dusk-cell convection reversal, appears in the evening-midnight sector within the polar cap when the IMF $B\sb{y}$ is positive and the conductivity is nonuniform. This convection reversal is attributed to be created by the B $\times$ V dynamo. Also, the inclusion of the region 2 field-aligned current leads to an enhancement of the electric field in the region between the region 1 and region 2 currents.
    • A simulation study of three-dimensional magnetic reconnection

      Ma, Zhi-Wei; Lee, L. C.; Kan, J. R.; Shaw, G. E.; Smith, R. W.; Hawkins, J. G. (1994)
      The magnetic reconnection process plays an important role in the interaction between the solar wind and the magnetosphere. It leads to the transfer of energy from the solar wind into the magnetosphere. In this thesis, we study three-dimensional (3D) aspects of magnetic reconnection based on magnetohydrodynamic (MHD) simulations. First, we examine the magnetic field topology of magnetic flux ropes formed in multiple X line reconnection (MXR). It is found that the magnetic field topology depends on the relative extent and location of the two neighboring X lines. Magnetic flux ropes with either smooth or frayed ends are obtained in our simulations. For magnetic flux ropes with smooth ends, a major amount of magnetic flux is connected at each end to only one side of magnetopause. Second, the evolution of the core magnetic field in the magnetic flux tube is studied for various magnetic reconnection processes. We find that the 3D cases always lead to a larger enhancement of core field than the corresponding 2D cases since plasma can be squeezed out of the flux tube in the third direction. The MXR process gives rise to a larger increase of the core field than the single X line reconnection process. The core magnetic field can be enhanced to three times the ambient magnetic field strength in the 3D MXR process. Finally, we examine the generation and propagation of Alfven waves and field-aligned currents in the 3D reconnection process. For cases with a zero guide field, it is found that a large portion of the field-aligned currents ($\sim$40%) is located in the closed field line region. Both the pressure gradient term and inertia term contribute to the generation of field-aligned currents. For cases with nonzero guide field, one sense of field-aligned currents is dominant due to the presence of the initial field-aligned current. In these cases, the inertia term makes a major contribution to the redistribution of field-aligned currents. The influence of the initial guide field on the longitudinal shift of the current reversal site is found to be consistent with observations.
    • Structure of reconnection layers in the magnetosphere

      Lin, Yu; Lee, Lou-Chuang; Hawkins, J. G.; Sentman, D. D.; Smith, R. W.; Swift, D. W. (1993)
      Magnetic reconnection can lead to the formation of observed boundary layers at the dayside magnetopause and in the nightside plasma sheet of the magnetosphere. In this thesis, the structure of these reconnection layers is studied by solving the one-dimensional Riemann problem for the evolution of a current sheet. Analytical method, resistive MHD simulations, and hybrid simulations are used. Based on the ideal MHD formulation, rotational discontinuities, slow shocks, slow expansion waves, and contact discontinuity are present in the dayside reconnection layer. Fast expansion waves are also present in the solution of the Riemann problem, but they quickly propagate out of the reconnection layer. Our study provides a coherent picture for the transition from the reconnection layer with two slow shocks in Petschek's model to the reconnection layer with a rotational discontinuity and a slow expansion wave in Levy et al.'s model. In the resistive MHD simulations, the rotational discontinuities are replaced by intermediate shocks or time-dependent intermediate shocks. In the hybrid simulations, the time-dependent intermediate shock quickly evolves to a steady rotational discontinuity, and the contact discontinuity does not exist. The magnetotail reconnection layer consists of two slow shocks. Hybrid simulations of slow shocks indicate that there exists a critical number, $M\sb{c}$, such that for slow shocks with an intermediate Mach number $M\sb{I} \ge M\sb{c}$, a large-amplitude rotational wavetrain is present in the downstream region. For slow shocks with $M\sb{I} < M\sb{c}$, the downstream wavetrain does not exist. Chaotic ion orbits in the downstream wave provide an efficient mechanism for ion heating and wave damping and explain the existence of the critical number $M\sb{c}$ in slow shocks.
    • The morphology and electrodynamics of the boreal polar winter cusp

      McHarg, Matthew G.; Olson, J. J. (1993)
      The major result of this thesis is the magnetic signatures of the dayside cusp region. These signatures were determined by comparing the magnetic observations to optical observations of different energy particle precipitation regions observed in the cusp. In this thesis, the cusp is defined as the location of most direct entry of magnetosheath particles into the ionosphere. Optical observations show that the observing station rotates daily beneath regions of different incident energy particles. Typically, the station passes from a region in the morning of high energy particles into a region near magnetic noon of very low energy precipitation, and then returns to a region of high energy precipitation after magnetic noon. A tentative identification of the cusp is made on the basis of these observations. The optical observations also are used to determine the upward field aligned current density, which is found to be most intense in the region identified as the cusp. The magnetic field measurements are found to correlate with the optical measurements. When the characteristic energy is high, the spectrogram shows large amplitude broad band signals. The Pc5 component of these oscillations is right hand polarized in the morning, and left hand polarized in the afternoon. During the time the optics detect precipitation with a minimum characteristic energy, the magnetic spectrogram shows a unique narrow band tone at 3-5 mHz. The occurrence statistics of the magnetic oscillations are compared to DMSP satellite observations of the cusp and low latitude boundary layer. The pulses that make the narrow band tone are found to come in wave trains that are phase coherent. These trains of coherent pulses are found to be separated by phase jumps from adjacent wave trains. These jumps in phase occur when a new field aligned current appears on the equatorward edge of the cusp. This combination of phase coherent wave trains associated with poleward propagating auroral forms which are shown to contain intense field aligned currents may be the signature of newly reconnected flux tubes in the ionosphere.
    • Magnetic reconnection in the presence of sheared plasma flow

      La Belle-Hamer, Annette Louise; Lee, L. C. (1994)
      Classical models of magnetic reconnection consist of a small diffusion region bounded by two slow shocks, across which the plasma is accelerated. Most space plasma current sheets separate two different plasmas, violating symmetry conditions across the current sheet. One form of asymmetry is a sheared plasma flow. In this thesis, I investigate the magnetic reconnection process in the presence of a shear flow across the current sheet using two-dimensional magnetohydrodynamic (MHD) simulations. The results show that only for sheared flow below the average Alfven velocity of the inflow regions can steady state magnetic reconnection occur. A detailed examination of the Rankine-Hugoniot jump conditions reveals that the two slow shocks of earlier models are replaced by a strong intermediate shock and a weaker slow shock in the presence of shear flow. Both symmetric and asymmetric density profiles are examined. Depending upon the direction of the flow in the adjacent inflow region, the effects from the sheared flow and the effects from the density asymmetry will compete with or enhance each other. The results are applied to the dayside and flank regions of the magnetosphere. For tailward flow in the flanks, the two asymmetries compete making the magnetic field transition layer broad with the high speed flow contained within the transition region. For the dayside region, the magnetic field transition region is thin and the accelerated flow is earthward of the sharp current layer (magnetopause). These results are consistent with the data. A velocity shear in the invariant direction was examined under otherwise symmetric conditions. With the magnetic field initially only in the $x-y$ plane, $B\sb{z},$ and consequently field-aligned current, is generated by the initial $v\sb{z}.$ The field-aligned current depends on the velocity profiles in all directions. For a velocity sheared in both the z and the y direction, the results show a very localized region of large field-aligned currents.
    • Radiation transport in cloudy and aerosol loaded atmospheres

      Kylling, Arve; Stamnes, Knut; Shaw, Glenn E.; Weeks, Wilford W.; Rees, Manfred H.; Smith, Roger W. (1992)
      The equation for radiation transport in vertical inhomogeneous absorbing, scattering, and emitting atmospheres is derived from first principles. It is cast in a form amenable to solution, and solved using the discrete ordinate method. Based on the discrete ordinate solution a new computationally efficient and stable two-stream algorithm which accounts for spherical geometry is developed. The absorption and scattering properties of atmospheric molecules and particulate matter is discussed. The absorption cross sections of the principal absorbers in the atmosphere, H$\sb2$O, CO$\sb2$ and O$\sb3,$ vary erratically and rapidly with wavelength. To account for this variation, the correlated-k distribution method is employed to simplify the integration over wavelength necessary for calculation of warming/cooling rates. The radiation model, utilizing appropriate absorption and scattering cross sections, is compared with ultraviolet radiation measurements. The comparison suggests that further experiments are required. Ultraviolet (UV) and photosynthetically active radiation (PAR) is computed for high and low latitudes for clear and cloudy skies under different ozone concentrations. An ozone depletion increases UV-B radiation detrimental to life. Water clouds diminish UV-B, UV-A and PAR for low surface albedos and increase them for high albedos. The relative amount of harmful UV-B increases on overcast days. The daily radiation doses exhibit small monthly variations at low latitudes but vary by a factor of 3 at high latitudes. Photodissociation and warming/cooling rates are calculated for clear skies, aerosol loaded atmospheres, and atmospheres with cirrus and water clouds. After major volcanic explosions aerosols change O$\sb3$ and NO$\sb2$ photodissociation rates by 20%. Both aged aerosols and cirrus clouds have little effect on photodissociation rates. Water clouds increase $(\sim$100%) photodissociation rates that are sensitive to visible radiation above the cloud. Solar warming rates vary by 50% in the stratosphere due to changing surface albedo. Water clouds have a similar effect. The net effect of cirrus clouds is to warm the troposphere and the stratosphere. Only extreme volcanic aerosol loadings affect the terrestrial warming rate, causing warming below the aerosol layer and cooling above it. Aerosols give increased solar warming above the aerosol layer and cooling below it.
    • A study of the link between cloud microphysics and climate change

      Hu, Yong-Xiang; Stamnes, Knut; Musgrave, David; Rees, Manfred; Shaw, Glenn E.; Tsay, Shee-Chee; Watkins, Brenton (1994)
      The climate related cloud radiative properties (fluxes and heating rates) are found to be determined by the second and the third moments of the cloud droplet size distribution. The detailed distribution of the cloud droplet size is unnecessary to obtain for climate purposes. An accurate parameterization of cloud optical properties suitable for climate models is developed. A new radiative-convective model has been developed and used for studying cloud-climate interactions. The energy balance at the Earth-atmosphere interface is treated in a self-consistent manner which avoids artificial tuning. The cloud radiative properties are accurately incorporated and are suitable for sensitivity studies of cloud-radiation-climate interactions. A sensitivity study of role of the cloud microphysical properties in the climate system is performed by studying the impact of cloud radiative forcing on the equilibrium state temperature. The cloud equivalent radius is found to be a very important variable in the climate system. A climate sensitivity study is performed to highlight the important role of the cloud absorption. An adjoint radiative transfer method is developed for use in the cloudy and aerosol-loaded atmospheres. The physical meaning of the adjoint radiative properties are discussed. The method is expected to be useful in climate modeling and remote sensing studies. A preliminary study of the atmospheric irreversibility is performed to elucidate the connection between cloud microphysical properties and the macrophysical direction of global climate. A variational principle which describes the macrophysical character of the climate system is established.
    • Magnetospheric imaging of EUV emissions at 83.4 and 30.4 nm wavelengths

      Garrido, Dante Espino; Smith, R. W. (1994)
      Magnetospheric images are constructed from resonant scattering of emissions by He$\sp+$ 30.4-nm and O$\sp+$ 83.4-nm ions from different spatial locations to study the structure of the intensities and its relation to the distribution of He$\sp+$ and O$\sp+$ ions around the Earth. The image intensities at these EUV wavelengths were obtained from a knowledge of ion scattering rates and available data on ion densities. This particular approach is called forward modelling and consists of the calculation of simulated EUV images of the magnetosphere. Different regions in the magnetosphere have been considered in this study to determine the dependence of the image intensities on ion energies and ion drift speeds with respect to the Sun-Earth line. Hot O$\sp+$ ions in the energy range from 1 keV to 50 keV are present in the plasma sheet with typical densities of the order of 0.1 ions cm$\sp{-3}$ arising during disturbed times. Image intensities of the order of a few millirayleighs were obtained in our simulations for these densities. During quiet times the densities are of the order of 0.05 ions cm$\sp{-3}.$ The reduction of the image intensities as a result of Doppler shifts caused by ion motion relative to the Sun-Earth line is discussed in detail and the effects of ion dynamics (particle acceleration) in the polar cap on the image intensities have also been analyzed for both He$\sp+$ and O$\sp+$ ions. The possibility of detecting polar outflows may also depend on the location of the imager. Simulated images of the plasmasphere and trough regions in both 30.4-nm and 83.4-nm wavelengths have been obtained to reflect the relative abundance of the ions in these regions. Photometric intensities of He$\sp+$ at 30.4 nm were obtained from a spinning rocket at an altitude of 435 km. The different viewing angles covered a wide range of regions in the magnetosphere, and this particular rocket geometry offered the possibility of obtaining the He$\sp+$ ion distribution from the measured intensities. This method (forward inversion) can be applied to 2-D images and it is shown that it is possible to extract 3-D ion distributions from the images.
    • An investigation of the dynamics of the mesopause: Fabry-Perot observations of winds and temperatures from nightglow emissions

      Conner, James F.; Smith, R. W. (1994)
      This work is a study of the behavior of tidal and planetary waves in the upper-middle atmosphere near the geographic south pole. This is accomplished with a characterization of the dynamic state of these motions. I used ground-based Fabry-Perot Spectrometer (FPS) measurements of the multiple-line, $P\sb1$(2)$\sb{c,d}$, nightglow emissions from the X$\sp2$II band of the neutral OH* molecule. I developed analytical techniques to determine a space and time distribution of spectral amplitudes and phases for the dynamic parameters of kinetic temperature and neutral wind in the OH* layer. Spectral analysis of the variations in this layer indicate the existence of two groups: a planetary wave group (periods of ${\sim}$1-10 days), with eastward phase progression, and a near semi-diurnal group (periods of ${\sim}$8-13 hours), with westward phase progression. Specific periods vary slightly for different years; this is most likely due to remote propagation conditions. Further separation of each group shows the wind oscillations exhibit wave-number one behavior with associated wave-number zero temperature oscillations, (with a few exceptions). The periodicities in the planetary group neutral wind motions are consistent with the model results of Salby, 1984, for propagation to high latitudes through realistic mean flows. The characterization of the dynamics of this layer has led to the discovery of a basic azimuthal asymmetry in the distribution of spectral amplitude for a given oscillation, that is, preferred azimuths. These preferred azimuths appear to be associated with changes in the direction, not the amplitude, of a cross-polar mean wind. This finding, in conjunction with the evanescence of some features, uncovered two cases of planetary wave dissipation. These occur when oscillations attempt to maintain their preferred alignment with a changing mean wind direction resulting in a decay of wind amplitude and a burst of thermal oscillation. Both cases occur at the same time. Coincident with these decays are enhancements in the wind and thermal energy of other, longer period, oscillations which share the same azimuthal preferences. Also coincident is an acceleration of the mean wind.
    • A study of the magnetosphere-ionosphere coupling processes

      Zhu, Lie; Kan, J. R. (1990)
      Magnetosphere-ionosphere (M-I) coupling processes are studied by using numerical modeling. An M-I coupling model of substorms on the ionospheric recombination time scale (tens of seconds) is developed. The model is two-dimensional (2-D) and time-dependent from which several signatures of substorms can be obtained and understood. The model is then extended to northward interplanetary magnetic field (IMF) conditions to study the effects of the M-I coupling on the high-latitude convection. Based on the model results, a mechanism for the origin of distorted two-cell ionospheric convection is proposed. The ionospheric and ground signatures of multiple field-aligned current sheets originating from dayside flux transfer events have been modeled. The interaction between Alfven waves and field aligned potential drops is studied by using a local model.
    • Plasma dynamics of the Earth magnetopause-boundary layer and its coupling to the polar ionosphere

      Wei, Chang-Quan; Lee, Lou-Chuang; Deehr, C. S.; Swift, D. W.; Tape, W. R.; Watkins, B. J. (1991)
      In this thesis, the plasma dynamics of the Earth magnetopause-boundary layer and its coupling to the polar ionosphere are studied by using computer simulations. First, the plasma dynamics and structure of the magnetopause-boundary layer are studied by a two-dimensional incompressible magnetohydrodynamic simulation code. It is found that the Kelvin-Helmholtz instability with driven boundary conditions at the magnetopause can lead to the formation of plasma vortices observed in the magnetopause-boundary layer. In the later stage of development, a density plateau is formed in the central part of the boundary layer. Second, the coupling of plasma vortices formed in the boundary layer to the polar ionosphere is studied based on a magnetosphere-ionosphere coupling model. The finite ionospheric conductivity provides a dragging force to the plasma flow and leads to the decay of plasma vortices in the boundary layer. In the model, the ionospheric conductivity is allowed to be enhanced due to accelerated electrons precipitating in upward field-aligned current regions. The competing effect of the formation and decay of vortices leads to the formation of strong vortices only in limited regions. Several enhanced conductivity regions are formed along the post-noon auroral oval, which may account for the observed auroral bright spots. In addition, the evolution of localized plasma vortices, as well as magnetic flux ropes, along magnetic field lines is studied. The evolution leads to the generation of large-amplitude Alfven waves, which carry field-aligned currents and provide the link for the coupling of plasma vortices and magnetic flux ropes in the magnetosphere to the polar ionosphere.
    • A theory of field-aligned current generation from the plasma sheet and the poleward expansion of aurora substorms

      Yamauchi, Masatoshi; Akasofu, Syun-Ichi (1990)
      This dissertation reports a study of the generation of field-aligned currents in the plasma sheet in terms of magnetosphere-ionosphere coupling. For the study, the plasma sheet and the ionosphere are treated as two-dimensional layers by height integration. In the magnetosphere between them, the Alfven wave transition time through this region is assumed to be zero. The ionospheric momentum is allowed to be transferred to the plasma sheet. Both linear analyses and numerical simulation are performed to study the field-aligned current generation. In the linear analysis, evolution from initial perturbations is studied. Zero order configurations are steady state without field-aligned currents. The field-aligned currents are treated as a perturbed quantity and linearly related with the other perturbed quantities. One result for the linear waves is that the magnetohydrodynamics (MHD) fast mode and Alfven mode are coupled through the ionospheric Hall current. The Hall current causes the dawn-dusk asymmetry: a westward-travelling wave is amplified on the region 1 current system, while an eastward-travelling wave is amplified elsewhere. The expansion phase of the magnetospheric substorm after the onset is numerically simulated on the near-earth plasma sheet. The inner edge of the plasma sheet is taken as the outflow boundary. As the initial condition, an enhanced earthward magnetospheric convection is assumed to cause a finite pressure increase at the inner edge of the plasma sheet. The numerical results are as follows. An MHD fast-mode wave is generated. It propagates tailward accompanied by the field-aligned currents. The wave propagation and the field-aligned currents account for the poleward expansion of the aurora and the region 1 field-aligned current during the expansion phase of the substorm. The region 1 field-aligned currents are linked with the dusk to dawn current on this wave, which is driven by the dynamo mechanism of the wave. The ionospheric Hall current causes asymmetry of the wave, and hence, of the field-aligned current distribution. This asymmetry accounts for the stronger field-aligned current in the premidnight sector.
    • Effects of gravity waves on the polar oxygen and hydroxyl airglow

      Viereck, Rodney Allen; Deehr, Charles S.; Degen, V.; Fritts, D. C.; Rees, M. H.; Smith, R. W. (1988)
      The effect of gravity waves on the OH (87 km) and O$\sb2$ (95 km) airglow emissions was examined using spectroscopic airglow data. The data was obtained from Longyearbyen, Svalbard (78$\sp\circ$N) and Fairbanks, Alaska (64$\sp\circ$N) using Ebert-Fastie spectrometers and a system of Meridian Scanning Photometers. The spectrometers scanned in wavelength from 8200A to 8750A which included the airglow emissions from the OH(6-2) Meinel band and the O$\sb2$(0-1) atmospheric band. The analysis was done by fitting a synthetic spectrum to the data and thereby the rotational temperature was calculated as well as the band intensity of each of the emissions. The rotational temperatures were assumed to represent the temperature of the emission region. Gravity waves were assumed to modify the density and temperature of the atmosphere in the region of the airglow emissions. These modifications were measured as fluctuations in the band intensity and rotational temperatures of the two emissions. In order to compare the data with theoretical models, it was necessary to calculate two parameters. The parameter $\eta$ is defined as the ratio of the amplitudes of the fluctuations in intensity and temperature. The other parameter is the phase angle between the fluctuations in intensity and temperature. These parameters were found to vary with wave period. The variations in $\eta$ and phase agreed fairly well, for long period waves, with the most recent models. None of the models agree with the observed values of $\eta$ and phase for short period waves. The second part of this thesis examines the vertical and horizontal wavelengths, the phase speeds, and the propagation directions of several specific gravity wave examples. During a 60 hour period of data taken from Svalbard, three well defined gravity waves were observed. The propagation directions implied a moving source south of the observing station.
    • A simulation study of magnetic reconnection processes at the dayside magnetopause

      Shi, Yong; Lee, L. C.; Swift, D. W.; Gosink, J.; Gatterdam, R.; Akasofu, S-I. (1989)
      In this thesis, the dayside reconnection processes are studied by using computer simulations. First, the global magnetic reconnection patterns at the dayside magnetopause are studied based on a two-dimensional incompressible magnetohydrodynamic (MHD) code. It is found that multiple X line reconnection may prevail at the dayside magnetopause when the magnetic Reynolds number is large ($>$200). The formation and subsequent poleward convection of magnetic islands are observed in the simulation. The Alfven Mach number of the solar wind, $M\sb{Asw}$, can also change the reconnection patterns. For a large $M\sb{Asw}$, reconnection tends to occur at the higher latitude region. Secondly, the structure of the dayside reconnection layer is studied by a two-dimensional compressible MHD simulation. In a highly asymmetric configuration typical of the dayside magnetopause, the pair of slow shocks bounding the reconnection layer in Petschek's symmetric model is found to be replaced by an intermediate shock on the magnetosheath side and a weak slow shock on the magnetospheric side. In addition, a mechanism for the enhancement of $B\sb y$, which is observed in the magnetopause current layer and magnetic flux tubes, is proposed.
    • Brucella suis type 4 in foxes and their role as reservoirs/vectors among reindeer

      Morton, Jamie Kay; Williamson, Francis S. L. (1989)
      Field and laboratory studies were conducted to test the hypotheses that (1) the reindeer/caribou organism, Brucella suis type 4, is incidentally transmitted to reindeer predators such as foxes but does not cause reproductive disease in them, and (2) infected predators such as foxes are terminal hosts and do not serve as reservoirs of infection for reindeer. In field collections, serologic prevalence of brucellosis was similar for male and female foxes (Vulpes vulpes and Alopex lagopus). B. suis type 4 was isolated from female Vulpes and Alopex. No association between reproductive status of foxes and brucellosis infections was observed. Serologic titers in Vulpes experimentally infected by oral exposure to Brucella suis type 4 were detected first by the standard tube and plate agglutination tests which were followed by the buffered Brucella antigen, rivanol, and complement fixation tests. Brucella suis type 4 was isolated from the feces 4 to 6 days post-exposure (PE) and from the oral cavity for as long as 3 weeks PE in Vulpes challenged with 10$\sp9$ or 10$\sp{11}$ colony forming units. Brucella suis type 4 was isolated frequently from regional lymph nodes in the head up to 18 weeks PE, and from only more distant nodes at 22 and 66 weeks PE. Organisms did not localize in the reproductive tract. Clinical effects of brucellosis in Vulpes experimentally-infected were not observed. Pathologic lesions were not detected in the male and non-gravid female reproductive tract. Due to breeding failure, effects of Brucella suis type 4 on the pregnant fox reproductive tract were not determined in experimental infections. Gross and microscopic pathology was limited to lymph nodes. Fox to fox transmission attributed to aerosols from products shed by infected foxes occurred readily. Transmission from Vulpes to lemmings (Dicrostonyx rubricatus) that were exposed to urine from infected fox occurred frequently. Transmission from infected Vulpes to two reindeer (Rangifer tarandus) occurred under conditions of close confinement. Ingestion of organisms passed mechanically in the fox feces was considered the probable source of infection. Fox saliva containing Brucella was also implicated in transmitting the organism through bites or aerosols.
    • Electron transport and optical emissions in the aurora

      Lummerzheim, Dirk; Rees, M. H.; Lee, L. C.; Olson, J. V.; Royer, T. C.; Stamnes, K. (1987)
      A one-dimensional, steady state auroral model is developed based on a linear electron transport calculation. A set of cross sections for electron neutral collisions describing elastic scattering, energy loss, and photon emission is compiled and used in conjunction with a discrete ordinate transport code. Calculated electron intensities are compared with in situ rocket measurements. Auroral optical emissions that result from direct electron impact on neutrals are calculated for synthetic and observed electron spectra. A systematic dependence of the brightness of auroral features on energy flux, characteristic energy, and atmospheric composition is found and parameterized. A method for interpreting the brightness and the ratio of brightnesses of certain auroral emissions in terms of the energy flux, characteristic energy, and relative oxygen density is described. Application of this method to auroral images acquired by nadir viewing instruments aboard a satellite is discussed and the distribution of energy flux, characteristic energy, and ionospheric conductances over the auroral oval is determined. Emissions that are suitable for analysing auroral spectra in terms of the atomic oxygen abundance in the auroral zone are identified.
    • The quasiparallel collisionless shock wave: A simulation study

      Mandt, Mark Edward; Kan, J. R.; Das, D.; Lee, L. C.; Olson, J. V.; Swift, D. W. (1988)
      The structure of the quasi-parallel collisionless shock wave is studied via a numerical simulation model. The model is compared to observations and theoretical predictions and within its limitations appears to reproduce the true shock structure reasonably well. Three electron equations of state and their effects on the simulation are examined. It is found that only the isotropic-adiabatic electron equation of state yields acceptable results in the simulation at high Mach numbers. The scale lengths of the shock are measured, normalized by the natural scale lengths of the plasma, and plotted as a function of the Alfven Mach number. It is found that the wavelength of the upstream waves follows that predicted for a phase standing whistler quite well and the scalelength of the jump in the magnitude of the magnetic field is generally greater than, but approximately equal to this wavelength. For Alfven Mach numbers $M\sb{A} >$ 2.5, waves are generated in the downstream region. Their wavelength and the scale length of the plasma transition are larger than the natural scale lengths of the plasma. The ion heating is seen to occur in two stages. In the first stage which occurs upstream of the principal shock ramp, the heating can be characterized by a polytropic power law equation of state with an exponent much greater than the isentropic-adiabatic rate of $\gamma$ = 5/3. The second stage of heating which occurs from the principal shock ramp to the downstream region is characterized by an exponent on the order of the isentropic-adiabatic rate. The results show that the ion heating occurs mainly around the principle density jump near the center of the shock transition region, while the increase in entropy takes place mainly in the upstream side of the shock transition region. It is suggested that the ion heating is a consequence of the non-adiabatic scattering of the ions through the magnetic field of the shock and its upstream precursor wave.
    • Particle simulations of magnetic field reconnection and applications to flux transfer events

      Ding, Da-Qing; Lee, L. C.; Akasofu, S-I; Hawkins, J. G.; Olson, J. V.; Swift, D. W. (1990)
      Basic plasma processes associated with driven collisionless magnetic reconnection at the Earth's dayside magnetopause are studied on the basis of particle simulations. A two-and-one-half-dimensional (2$1\over2$-D) electromagnetic particle simulation model with a driven inflow boundary and an open outflow boundary is developed for the present study. The driven inflow boundary is featured with a driving electric field for the vector potential, while the open outflow boundary is characterized by a vacuum force free condition for the electrostatic potential. The major findings are as follows. (1) The simulations exhibit both quasi-steady single X-line reconnection (SXR) and intermittent multiple X line reconnection (MXR). The MXR process is characterized by repeated formation and convection of magnetic islands (flux tubes or plasmoids). (2) Particle acceleration in the MXR process occurs mainly in O line regions as particles are trapped within magnetic islands, not in X line regions. The MXR process results in a power law particle energy spectrum of $f(E)\sim E\sp{-4}$. (3) Field-aligned particle heat fluxes and intense plasma waves associated with the collisionless magnetic reconnection process are also observed. (4) When applied to the dayside magnetopause, simulation results show that the MXR process tends to generate a simultaneous magnetic field perturbation on both sides of the dayside magnetopause, resembling the observed features of two-regime flux transfer events (FTEs). (5) An intrusion of magnetosheath plasma bulge into the magnetosphere due to the formation of magnetic islands may lead to the layered structures observed in magnetospheric FTEs. (6) In the current sheet, the enhanced tearing mode instability caused by the driving force applied at the driven inflow boundary creates an energy source at a specific wavenumber range with $k\sb{z}L\sim$ 0.3 in the modal spectrum of the magnetic field $B\sb{x}$ component. An inverse cascade of the modal spectrum of $B\sb{x}$ leads to the formation of the large-scale ordered magnetic island structures observed in the simulations. (7) In addition, the results of a theoretical study show that the tearing mode instability, and hence the magnetic reconnection at the dayside magnetopause, do not exhibit strong dependence on the magnetosheath $\beta$ values.
    • A theoretical study of magnetosphere-ionosphere coupling processes

      Cao, Fei; Kan, J. R.; Akasofu, S-I.; Biswas, N.; Shaw, G.; Swift, D. (1991)
      Magnetosphere and ionosphere are coupled electrodynamically by waves, field-aligned currents and parallel electric fields. Several fundamental coupling processes are addressed in my thesis. It is shown that the Alfven wave is the dominant mode in transmitting field-aligned currents. Therefore, dynamic M-I coupling can be modeled by the Alfven wave bouncing between the ionosphere and the magnetospheric boundaries. The open magnetopause, separating the solar wind and the magnetosphere, behaves like a near perfect reflector to the Alfven wave because of the large solar wind inertia. At the plasma sheet, however, the reflection coefficient may extend over a wide range, depending on the location in the plasma sheet. As the Alfven wave propagates back and forth between the magnetosphere and ionosphere, the field-aligned current density increases dramatically at certain locations, especially near the head of the westward traveling surge, causing potential drops to develop along magnetic field lines. It is found that the existence of parallel potential drops can distort the global convection pattern and limit the upward field-aligned current. The magnetic reconnection at the dayside magnetopause is responsible for enhancing the convection in the magnetosphere, which subsequently propagates toward the ionosphere by the Alfven wave. The patchy and intermittent reconnection at the dayside magnetopause can be initiated by the 3-D tearing instability, leading to the isolated magnetic islands and X-line segments. The nonlinear evolution of tearing in terms of the magnetic island coalescence is also studied.
    • Analysis Of Methods For Solar Wind Propagation From Lagrangian Point L1 To Earth

      Jensen, Poul F.; Bristow, William; Newman, David; Nielsen, Hans; Otto, Antonius; Smith, Roger (2013)
      The Lagrangian point L1 is situated about 1.5 million kilometers sunwards from Earth and provides a unique orbiting point for satellites, placing them constantly upstream in the solar wind, allowing for prediction of solar wind conditions impacting Earth's magnetosphere. Short-term forecasting of geomagnetic activity requires extrapolation of solar wind data from L1 to Earth (typical propagation time around 1 hour), as does any research in interactions between the solar wind and the magnetosphere during intervals when no Earth-orbiting satellites are in the solar wind. To accurately predict propagation delays it is necessary to take the geometry of incoming solar wind structures into account. Estimating the orientation of solar wind structures currently has to be done using single satellite measurements, which will likely remain the case for another decade or more, making it important to optimize single satellite techniques for solar wind propagation. In this study a comprehensive analysis of 8 different single satellite propagation methods was performed, each involving several variable parameters. 4 of these used electric field calculations and had not previously been tested for solar wind propagation. Large amounts of data were propagated from a satellite near L1 to target satellites near Earth for comparison to measured data, using specific test scores to evaluate relative performance between methods and parameter values. Electric field methods worked well for continuous data but did not predict arrival time of discontinuities (abrupt transitions) as accurately as methods based on magnetic field data, one of which delivered the best results on all accounts. This method had also been found to give best results in a previous study, but optimal parameter values were significantly different with the larger data set used here. Propagating 6,926 discontinuities it was found that on average they arrive about 30 seconds later than predicted (about 1% of the propagation time). Barring a systematic error in velocity data or delay calculations the offset suggests an asymmetry in the geometry of solar wind structures. While this idea is physically plausible it was not unambiguously supported by the data.