Sub-communities within this community

Recent Submissions

  • Porphyry copper, copper skarn, and volcanogenic massive sulfide occurrences in the Chandalar copper district, Alaska

    Nicholson, Lisa; Keskinen, Mary (1990-05)
    Metamorphosed porphyry copper, copper skarn, and volcanogenic massive sulfide (VMS) occurrences have been found in 5 key prospects within Devonian rocks of the Chandalar copper district, Alaska. The Venus, Victor, Eva, and Evelyn Lee prospects contain "proximal" porphyry copper/copper skarn mineralization, whereas the Luna prospect contains "distal" Cu-Zn skarn and Cu-Zn VMS mineralization. Porphyry copper mineralization is recognized by granodiorite composition meta-intrusives; zoned potassic, sericitic and propylitic alteration; and del34S values of -1.5 to -0.6 per mil. Skarns consist of andraditic garnet (Ad30-100) and diopsidic pyroxene (Hd9-46), and have del34S values of -4.7 to -1.1 per mil. Alteration types in intrusive rocks and adjacent skarn are generally compatible. VMS occurrences contain chloritic and silicic alteration, and massive sulfides have del34S values of -0.8 to 6.9 per mil, consistent with values from known Devonian VMS deposits.
  • Use of Social Media By Alaskan Libraries

    Kingsley, Ilana (2018-11-19)
    This paper summarizes a survey study of the use of social media by school, public, and academic libraries in Alaska. Librarians at 243 Alaskan libraries were contacted and asked to participate in the study; 83 librarians responded by taking the survey. Results show that public libraries are heavily engaged in social media; academic libraries regularly use social media; and some school libraries use social media but many face school district restrictions on usage. The top reasons Alaskan libraries use social media is to promote library news and events; promote specific resources; and promote specific services. Reasons for not using social media include: not having enough time; social media isn’t deemed as important; and poor Internet connectivity in rural communities. Social media platforms are selected based on librarian preference and comfort level, as opposed to audience characteristics. Libraries that aren’t under prohibitive restrictions, such as policies against using social media or poor internet/bandwidth issues, should frequently reassess their use of social media platforms to best engage with patrons and the community.
  • The kinetics of glucose limited growth by a marine yeast

    McNab, Allen David (1969-05)
    The kinetics of glucose limited growth by a marine yeast, shown to be a Rhodotorula species, have been studied in a continuous culture apparatus. The saturation constant, in synthetic media, has been calculated to be 0.25 mg/l, on the assumption that saturation kinetics are followed, The maximum growth rate was determined in both synthetic media, and artificial sea water. On the basis of inhibition kinetics, the kinetic behavior of this yeast in the marine environment has been predicted. The effect of temperature on the maximum growth rate has been determined and, on the assumption of a similar effect on the saturation constant, the saturation constant has been postulated to be in agreement with similar values determined for other microorganisms.
  • Picture Alaska: an index

    Drazan, Joseph; Burke, Joseph A. (Elmer E. Rasmuson Library, University of Alaska, 1974)
  • Elmer E. Rasmuson Papers, 1898-2000

    Morris, Lisa M. (Archives and Manuscripts, Alaska and Polar Regions Collections, Elmer E. Rasmuson Library, University of Alaska Fairbanks, 2005-12)
  • Alaska Natives: a guide to current reference sources in the Rasmuson Library

    Goniwiecha, Mark C. (Elmer E. Rasmuson Library, University of Alaska - Fairbanks, 1985)
  • Guide to the Mike Gravel Papers, 1957-1980

    Tabbert, Barbara M. (Alaska and Polar Regions Department, Elmer E. Rasmuson Library, University of Alaska - Fairbanks, 1986)
  • The changing vista of the northern Northwest Coast Indian Deer Ritual

    Austin, Kenneth Frank (1999-08)
    From time immemorial until the start of the 20th century, when disputing Tlingits decided to end a conflict, Tlingit clan leaders and elders met in council and negotiated an equitable peace settlement. After reaching a satisfactory negotiation, a peace dance took place to validate the settlement. Besides the Tlingits, the neighboring Indian groups in Southeast Alaska and British Columbia practiced this custom. When the European and Western powers assumed governance, the deer ritual--a judicial function of the Pacific Northwest Coast Indians--was modified, and new forms appeared. Presently, while elders know their regional history, many do not remember the protocol and formalities of the rite that was performed. This thesis undertakes a step into the past when the rite had an active and viable purpose in settling disputes and validating agreements
  • Modeling of Arctic stratus cloud formation and the maintenance of the cloudy Arctic boundary layer

    Zhang, Qiuqing; Stamnes, Knut; Harrington, Jerry; Sentman, Davis; Watkins, Brenton (1999)
    The formation of Arctic stratus clouds (ASCs) and the maintenance of the cloudy Arctic boundary layer are studied with two models: a one-dimensional radiative-convective model and a three-dimensional large eddy simulation (LES) model. The one-dimensional radiative-convective model consists of a comprehensive radiative module, a cloud parameterization with detailed microphysics and a convective adjustment scheme. The model is designed specifically for studying ASC formation. With this model, the roles of radiation and cloud microphysics in the formation of ASCs and multiple cloud layers are investigated. The simulations reproduce both single and multiple cloud layers that were observed with inversions of temperature and humidity occurring near the cloud top. The detailed cloud microstructure produced by the model also compares well with the observations. The physics of the formation of both single and multiple cloud layers is investigated. Radiative cooling plays a key role during the initial stage of cloud formation in a atmosphere. It leads to a continual temperature decrease promoting water vapor condensation on available cloud condensation nuclei. The vertical distribution of humidity and temperature determines the radiative cooling and eventually where and when the cloud forms. The observed temperature inversion may also be explained by radiative cooling. The three-dimensional LES model is adopted to evaluate the one-dimensional model, especially the convective adjustment scheme. The advantages and limitations of the one-dimensional model are discussed. The LES results suggest that the convective adjustment scheme is capable of capturing the main features of the vertical heat and moisture fluxes in the cloudy Arctic boundary layer. The LES model is also used to investigate the maintenance of the cloudy Arctic boundary layer. The turbulence in the cloudy Arctic boundary layer is primarily maintained by the buoyancy effect due to the cloud top cooling. It is found that weak large scale downward motion aids in cloud development and maintenance.
  • Small spatial and fast temporal ionosphere -magnetosphere coupling processes

    Zhu, Hua; Otto, Antonius (2000)
    I have developed a two-dimensional, three-fluid model (electrons, ions and neutrals) to simulate small-scale magnetosphere-ionosphere coupling processes. The code includes ionization and recombination processes, the Hall term in Ohm's law, and various heat sources in the energy equations. The electro-dynamic response and the evolution of the collision frequencies are treated self-consistently in a height resolved ionosphere. The model allows for the propagation of Alfven waves. The simulation is particularly suited for fast temporal variations and small spatial scale ionospheric structures associated with filamentary aurora and ionospheric heating experiments (e.g. HAARP). I have investigated the evolution of field-aligned currents in the magnetosphere-ionosphere system and found several notable effects---ion heating due to plasma-neutral friction, electron heating resulting from energetic particle precipitation and ohmic dissipation by strong field-aligned currents. The simulation of plasma. heating in the ionosphere is motivated by a specific auroral event that was simultaneously observed with optical and radar instruments. The results indicate that a consistent explanation of this event requires ohmic heating of electrons in a strong field-aligned electric current layer. They suggest strongly that the observed sequence of events can be explained only if spatial structure is present in the ionosphere so that it requires at least a two-dimensional model. Electron heating in strong field-aligned currents also provides a mechanism to deposit energy in the F-region of ionosphere and thus can explain the formation of tall auroral arcs. The simulation of the formation of field-aligned currents shows a strong plasma density depletion in the region of downward field-aligned current layer. The depletion is due to the divergent flow of the plasma. Similarly, the plasma density increases in the region of upward field-aligned current because of the convergent plasma motion. A modification of the ionospheric conditions by localized particle precipitation has an interesting effect. At the edge of the precipitation region, a new field-aligned current filament is formed. Finally, the simulation code is not limited by steady state assumptions commonly used for the Hall model and Pedersen conductivities.
  • Geology and timing of zinc-lead-silver mineralization, northern Brooks Range, Alaska

    Werdon, Melanie Beth; Newberry, Rainer J. (1999)
    The north-central and northwestern Brooks Range of Alaska hosts widespread Carboniferous Zn-Pb-Ag +/- Ba shale-hosted massive sulfide (Sedex) deposits, and Zn-Pb-Ag +/- Cu vein-breccia and disseminated sulfide occurrences. The Sedex deposits are hosted by black carbonaceous shale and siliceous mudstone of the Mississippian to Pennsylvanian Kuna Formation and are spatially associated with minor (e.g. Red Dog) to locally abundant (e.g. Drenchwater) volcanic and hypabyssal intrusive rocks. The vein-breccia and disseminated sulfide occurrences show no obvious igneous association and are hosted by a deformed but only weakly metamorphosed package of Upper Devonian to Lower Mississippian mixed continental and marine elastic rocks (the Endicott Group). Textural, mineralogical, isotopic, chemical, and fluid inclusion data indicate that sulfides, quartz, and lesser carbonates in the Kady vein-breccia and disseminated sulfide prospect were deposited from slightly acidic, low salinity, carbon-destructive, relatively oxidized, low temperature (<250�C) hydrothermal fluids, under evolving chemical conditions (i.e. decreasing temperature and pressure, and increasing pH, fo2, fs2). The lack of known Sedex mineralization in the north-central Brooks Range and the presence of sulfide mineralization within the Endicott Group suggests that Kady represents the hydrothermal fluid pathway below a failed or non-existent Sedex system. Trace element analyses of volcanic rocks and 40Ar/ 39Ar laser step-heating ages indicate the following geologic history for the north-central and northwestern Brooks Range: within-plate alkaline volcanic rocks at Red Dog and Drenchwater were emplaced from approximately 344 Ma to 336 Ma in a continental extensional environment. This presumably set up an elevated geothermal gradient, which heated basinal fluids. Sedex mineralization is estimated to have formed between 337 and ~314 Ma by basinal dewatering. 40Ar/39Ar ages of recrystallized white mica in Upper Devonian sandstone adjacent to large sulfide-bearing vein-breccia zones fall within the independently estimated time frame for Sedex mineralization. Tholeiitic gabbro magmatic activity occurred around 276 +/- 15 Ma. The transition with time from within plate alkaline to tholeiitic magmatism suggests progressive episodic extension in a continental basin.
  • Cloud and surface properties and the solar radiation budget derived from satellite data over the Arctic Ocean: Comparisons with surface measurements and in situ aircraft data

    Xiong, Xiaozhen; Stamnes, Knut (2000)
    Use of satellite data to study the surface and cloud properties and the solar radiation budget (SRB) is very important for improving our understanding of cloud and sea-ice albedo feedback in the Arctic. Based on an accurate and comprehensive Radiative Transfer Model (RTM), algorithms were developed for using the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) data for the discrimination of cloud from snow/ice surfaces, retrieval of snow surface properties and surface albedo, and retrieval of cloud optical depth (tau) and effective droplet size ( re). Through the improved estimation of solar reflectance in AVHRR channel 3 (3.75 mum) and atmospheric anisotropic correction, a threshold function was found and used for developing an automatic cloud discrimination algorithm over snow/ice surfaces. Thin cirrus was discriminated using the brightness temperature difference between AVHRR channels 4 and 5 and brightness temperature in channel 4. Retrieval of snow grain size and mass-fraction of soot from AVHRR is difficult because of the effects of aerosol in channel 1 and the strong water vapor absorption in channel 2. Retrieval of surface albedo is more promising, but, with the melt of snow/ice, different narrow-to-broadband conversion relations should be used to derive broadband albedo. AVHRR channels 2, 3 and 4 are used to retrieve tau, r e and cloud top temperature simultaneously. Validation of these algorithms with in-situ aircraft measurements by the NCAR C-130 and the NASA ER-2 and with surface measurements obtained during the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment indicates that the retrieved re is close to the "true" value of re, but the retrieved tau tends to be overestimated. Uncertainties of cloud retrievals with regard to cloud cover fraction, vertical inhomogeneity, multi-layer stratification and cloud phase were examined. Inter comparison of different satellite data demonstrates that NOAA-14 AVHRR data for SHEBA is overestimated by 10--20% using the calibration by Rao and Chen (1996). Finally, seasonal variation of surface albedo, cloud properties and SRB over SHEBA was derived based on 1 or 2 AVHRR overpasses per day from April to August, 1998.
  • Till deformation beneath Black Rapids Glacier, Alaska, and its implication on glacier motion

    Truffer, Martin; Harrison, W. D. (1999)
    The motion of a glacier is largely determined by the nature of its bed. The basal morphology and its reaction to the overlying ice mass have been subject to much speculation, because the glacier bed is usually difficult to access, and good field data are sparse. In spring 1997 a commercial wireline drill rig was set up on Black Rapids Glacier, Alaska, to extract cores of basal ice, subglacial till, and underlying bedrock. One of the boreholes was equipped with three tiltmeters to monitor till deformation, and a piezometer to record pore water pressure. The surface velocity and ice deformation in a borehole were also measured. The drill successfully reached bedrock twice after penetrating a till layer, some 5 to 7 m in thickness, confirming an earlier seismic interpretation. The till consisted of a sandy matrix containing clasts up to boulder size. Bedrock and till lithology indicated that all the drill holes were located to the north of the Denali Fault, a major tectonic boundary along which the glacier flows. The mean annual surface velocity of the glacier was 60 ma-1 , of which 20 to 30 ma-1 were ice deformation, leaving 30 to 40 ma-1 of basal motion. The majority of this basal motion occurred at a depth of more than 2 m in the till, contradicting previously held ideas about till deformation. Basal motion could occur as sliding of till over the underlying bedrock, or on a series of shear layers within the till. This finding has implications for the interpretation of the geologic record of former ice sheets, for geomorphology, and for glacier dynamics. The effect of a thick till layer on ice flow and on quantities observable at the glacier surface was calculated. These include velocity changes on secular, seasonal, and shorter time scales. A mechanism for uplift events and dye tracing responses was suggested. An easy surface observation that could serve to clearly distinguish a glacier underlain by till from the more traditional view of a glacier underlain by bedrock could not be identified.
  • Predator-prey dynamics between mountain lions and mule deer: Effects on distribution, population regulation, habitat selection, and prey selection

    Pierce, Becky Miranda; Bowyer, R. T.; Bleich, V. C. (1999)
    Mountain lions (Puma concolor) and mule deer ( Odocoileus hemionus), which share a winter range in the Eastern Sierra Nevada in Round Valley, California, USA, were fitted with radio-telemetry collars and tracked to determine their movements and cause of mortality. The mountain lion population of Round Valley refers to a group of individuals that lived in close proximity to one another, essentially isolated from similar groups during the winter, and fed on the migratory herd of mule deer that overwinter in Round Valley. Mountain lions migrated seasonally with the deer population, and two distinct patterns for coping with variability in abundance of prey were observed. The unique migratory behavior identified for the mountain lions in this study indicates a more flexible social system for mountain lions than previously described. Tests of whether the presence of another mountain lion affected where individuals to killed deer indicated that social interactions had no effect and that social behavior was not regulating the population of mountain lions via spatial partitioning of prey. Examination of habitat selection by mule deer and mountain lions revealed that mule deer selected habitat at higher elevations (P < 0.001) with more bitterbrush ( Purshia tridentata) and less rabbitbrush (Chrysothamnus nauseosum ) than random locations. Mountain lions killed deer in relatively open areas with more desert peach (Prunus andersonii) than locations in which deer foraged. Those results indicated that deer were not confronted with a tradeoff in terms of habitat selection on the winter range because habitat with the best forage (e.g. bitterbrush), also provided the least predation risk. Comparisons of mule deer killed by mountain lions, coyotes, and automobiles indicated that mountain lions selected young (<1 year old) deer and both predators selected older age classes among adults. Furthermore, there was no selection by either predator for animals in poor condition. Among mountain lions in different social categories, female mountain lions with kittens selected more young deer than did other social categories. This study indicated that ambush predators (mountain lions) may be as selective for prey as coursing predators (coyotes) and that lactation in mountain lions may play a role in determining prey selection. ion.
  • Ice -wedge networks and "whale-hole" ponds in frozen ground

    Plug, Lawrence J.; Hopkins, David M. (2000)
    The patterns of ice-wedge networks and of whale-hole ponds in frozen ground self-organize by strong interactions between pattern elements. Mechanisms for the consistent spacing (15--25 m) and orientation between ice wedges are examined in a model encapsulating the opening of fractures under a combination of thermally-induced tensile stress, stress reduction near open fractures, and heterogeneity of frozen ground and insulating snow. Modeled networks are similar to ice-wedge networks on the Espenberg coastal plain, Bering Land-Bridge National Park, Alaska, at the level of variation among Espenberg networks, as indicated by: (i) comparisons of distributions of relative orientation and spacing between wedges; and (ii) application of nonlinear spatial forecasting to modeled and Espenberg network patterns. Spacing in modeled networks is sensitive to fracture depth and weakly sensitive to thermally-induced tensile stress and substrate strength, consistent with the narrow range of spacing between natural ice wedges in different regions. In an extended model that includes recurring fractures over thousands of winters, networks similar to natural ice-wedge networks form. The annual pattern of fractures diverges from the ice-wedge pattern, with only &frac12;--&frac34; of wedges fracturing in a single year at a steady-state reached after approximately 103 y. Short-lived sequences of extreme stress from cooling can permanently alter the spacing between and the fracture frequency of modeled ice wedges, suggesting that the existence and characteristics of existing and relic natural ice-wedge networks reflect extreme, not mean, climate conditions. Ponds on the Espenberg beach-ridge plain, approximately 2 m across and 1 m deep and surrounded by raised rings of ice-rich permafrost 2 m across and 0.5 m high, form through an interplay between localized bacterial decomposition of peat, thawing of frozen ground and frost heaving of peat in rings. Groups of hundreds of ponds at Espenberg assemble through time because new ponds are favored to form adjacent to raised rings around existing ponds. The nonlinear behavior that results from strong interactions in patterns of ice-wedge networks and in ponds suggests general limitations in the application of linear approaches to inferring the response of geomorphic systems to changes in forcing, such as climate change.
  • Seismic investigations of subsurface volcanic structures and processes at Mount Spurr, Alaska and Soufriere Hills Volcano, Montserrat, West Indies

    Power, John A.; Wyss, Max (1998)
    Seismological techniques are used to infer the subsurface structures and volcanic processes at two recently active volcanoes: Mount Spurr, Alaska, and Soufriere Hills Volcano, Montserrat, West Indies. The three-dimensional P-wave velocity structure of Mount Spurr is determined to depths of 10 km by tomographic inversion of 3,754 P-wave arrival times from local earthquakes. Results show a prominent low-velocity zone beneath the southeast flank of Crater Peak extending from the surface to 3--4 km below sea level, spatially coincident with an active geothermal system. Beneath Crater Peak an approximately 3-km-wide zone of relatively low velocities correlates with a near vertical band of seismicity, suggestive of a magma conduit. No large low-velocity zone indicative of a magma chamber occurs within the upper 10 km of the crust. In the three years bracketing the 1992 eruptions of Mount Spurr's Crater Peak vent, approximately 2,500 located events were classified as Volcano-Tectonic (VT) earthquakes, Long-Period (LP) events, or Hybrid events. An unusual mix of VT, LP, and hybrid events at 20 to 40 km depth began coincident with the onset of unrest and peaked shortly after eruptive activity ended. The classified seismic events are combined with geophysical and geological data to develop a simplified model of the magmatic plumbing system of Mount Spurr. The major components of this model are a deep magma source zone at 20--40 km depth, a smaller storage zone at about 10 km depth, and a pipe-like conduit that extends to the surface. The frequency-magnitude distribution of earthquakes measured by the b-value is determined as a function of space beneath Soufriere Hills Volcano, from data recorded between August 1, 1995 and March 31, 1996. A volume of high b-values (b > 3.0) with a 1.5 Ian radius is imaged between 0 and 1.5 Ian beneath English's Crater and Chance's Peak. This anomaly extends southwest to Gage's Soufriere. At depths greater than 2.5 km, volumes of comparatively low b-values ( b <math> <f> ~</f> </math> 1) are found beneath St. George's Hill, Windy Hill, and below 2.5 kin to the south of English's Crater.

View more