• Assessment And Prediction Of Potentially Mineralizable Organic Nitrogen For Subarctic Alaska Soils

      Zhao, Aiqin; Zhang, Mingchu (2011)
      The objective of this study was to identify a rapid laboratory technique to predict potentially mineralizable organic N for subarctic Alaska soils. Soil samples were taken from major agricultural area of subarctic Alaska. Laboratory incubation followed by kinetic model fit was first used to select a best model to estimate potential soil N mineralization. By correlating the model estimated organic N pool sizes and different chemical extracted organic N, I then found the best chemical method to estimate soil potentially mineralizable N. Spectroscopic properties of water extractable organic matter were also determined and correlated with model estimated organic N pool sizes in order to improve the estimation of soil mineralizable N pool. Finally, the best chemical method and spectroscopic property were used in the selected best kinetic model for the prediction of soil N mineralization in field incubation. Model comparisons showed that models with fixed rate constants were better than that the ones with rate constants estimated from simulation. Among models with fixed rate constants, fixed double exponential model was best. This model differentiated active mineralizable organic N pool with a fixed rate constant of 0.693 week-1 and slow mineralizable organic N pool with a fixed rate constant of 0.051 week-1. By correlating model estimated organic N pool size and chemical extracted organic N amount, I found that the potentially mineralizable organic N size was closely correlated with hot (80 �C) water extractable organic N or 1 M NaOH hydrolysable organic N. By correlating model estimated organic N size and spectroscopic characteristics of water extractable organic matter, I found that the active mineralizable organic N pool was correlated with humification index in cold (22 �C) water extraction (R 2=0.89, p<0.05), which indicates that characterizing extracted organic matter was a useful tool to improve the estimation of soil organic N pools. In summary, potential mineralizable organic N in soils from subarctic Alaska can be estimated by hot water extractable organic matter or 1 M NaOH hydrolysable organic N, which accounted for 70% and 63% of the variation in potentially mineralizable organic N, respectively. This approach will provide fundamental insight for farmers to manage N fertilizer application in agricultural land and also provide some basic information for ecologists on predicting N release from Alaska soil that can be used for assessing the N impact on ecosystem.
    • Carbon Cycling In Three Mature Black Spruce ( Picea Mariana [Mill.] B.S.P.) Forests In Interior Alaska

      Vogel, Jason Gene; Valentine, David (2004)
      Climate warming in high latitudes is expected to alter the carbon cycle of the boreal forest. Warming will likely increase the rate of organic matter decomposition and microbial respiration. Faster organic matter decomposition should increase plant available nutrients and stimulate plant growth. I examined these predicted relationships between C cycle components in three similar black spruce forests (Picea mariana [Mill] B.S.P) near Fairbanks, Alaska, that differed in soil environment and in-situ decomposition. As predicted, greater in-situ decomposition rates corresponded to greater microbial respiration and black spruce aboveground growth. However root and soil respiration were both greater at the site where decomposition was slowest, indicating greater C allocation to root processes with slower decomposition. It is unclear what environmental factor controls spruce allocation. Low temperature or moisture could cause spruce to increase belowground allocation because slower decomposition leads to low N availability, but foliar N concentration was similar across sites and root N concentration greater at the slow decomposition site. The foliar isotopic composition of 13C indicated soil moisture was lower at the site with greater root and soil respiration. From a literature review of mature black spruce forests, it appears drier (e.g. Alaska) regions of the boreal forest have greater soil respiration because of greater black spruce C allocation belowground. Organic matter characteristics identified with pyrolysis gas chromatography-mass spectrometry correlated with microbial processes, but organic matter chemistry less influenced C and N mineralization than did temperature. Also, differences among sites in C and net N mineralization rates were few and difficult to explain from soil characteristics. Warming had a greater influence on C and N mineralization than the mediatory effect of soil organic matter chemistry. In this study, spruce root C allocation varied more among the three stands than other ecosystem components of C cycling. Spruce root growth most affected the annual C balance by controlling forest floor C accumulation, which was remarkably sensitive to root severing. Predicting the response of black spruce to climate change will require an understanding of how spruce C allocation responds to available moisture and soil temperature.
    • Ecology of birch litter decomposition and forest floor processes in the Alaskan taiga

      Wagener, Stephen Mitchell (1995)
      Our view of an ecological process is influenced by the scale of our hypotheses and experiments. The forest floor can be examined as a system, where processes that affect ecosystem carbon and nutrient cycling are controlled by macroscale variables (seasonal climatic changes), which in turn affect microscale controls over microbial activity. In the forest floor of Alaskan taiga, annual layers of Equisetum (horsetail) litter demarcate cohorts of birch litter. We collected samples of the forest floor monthly during September 1992, and in June-September 1993. Forest floor material was separated into each of the three most recent litter cohorts, plus the Oe layer, and the Oa layer. Overall, respiration potential decreased with depth of litter (litter age), but showed no change over time. Nitrogen mineralization potential increased with depth, and fluctuated over time. Microbial biomass did not vary with depth, but did increase greatly in September in conjunction with increased litter moisture. Litter C:N ratio decreased with time and varied with depth according to the year-to-year variation in litter quality. Our hypothesis that microbial activity on a particular litter cohort is a function of the litter quality, the vertical position of the litter in the forest floor, and the timing of the observation within seasonal macroclimatic cycles was supported. The distribution of some taxa of soil fauna correlated with depth. In these cases, the fauna were likely constrained mostly by differences in the microclimate of the forest floor strata. Other soil fauna varied over time, likely in response to differences in the microbial community. Yet other faunal distributions showed an interaction between depth and time, apparently responding to a combination of changes in microclimate and changes in food availability. The creatures that live in water pores may also have responded to an increase in habitat space as the top-most litter strata became wetter. "Cascading" microcosms containing material from these forest floor strata showed a temporary suppression of respiration by leachates from the newer litter on underlying forest floor material. Traditional litterbag techniques were also used to show changes in nitrogen that indicate winter microbial activity.
    • Soil consumption of atmospheric methane: Importance of microbial physiology and diversity

      Gulledge, Jay Michael (1996)
      Recently, atmospheric CH$\sb4$ concentration has risen dramatically, apparently due to human activities. Since is CH$\sb4$ is involved in several atmospheric processes that regulate Earth's climate, it is important that we understand the factors that control its atmospheric concentration. One such factor is biological CH$\sb4$ consumption in well-drained soils. Although this sink may comprise nearly one-tenth of the annual destruction of atmospheric CH$\sb4$, We know relatively little about it. I conducted a research project to investigate the influences of CH$\sb4$ supply, soil moisture, dissolved salts, and NH$\sb4\sp+$-fertilizer on the activity of soil CH$\sb4$ oxidizers. When starved of CH$\sb4$, two upland taiga soils gradually lost their capacities to oxidize CH$\sb4$, indicating that the process was not merely fortuitous, and that the organisms involved were truly methanotrophic. The relationship between soil moisture and CH$\sb4$ consumption was parabolic, with maximum oxidation occurring at a moisture level that achieved the maximum possible CH$\sb4$ diffusion rate, while minimizing water stress on the methanotrophs. Optimal soil moisture occurred in a relatively narrow range among an array of physically dissimilar soils, providing that moisture content was expressed as a percentage of the water holding capacity fo a particular soil, rather than as absolute water content. In recent years, one of the most intensely investigated controls on soil CH$\sb4$ consumption has been its inhibition by NH$\sb4\sp+$-fertilizer. In addition to NH$\sb4\sp+,$ however, I found that other ions inhibited CH$\sb4$ oxidation. In some soils non-NH$\sb4\sp+$ ions were so toxic that they completely masked the NH$\sb4\sp+$ effect. It is crucial, therefore, to control for salt effects when investigating NH$\sb4\sp+$-inhibition. In both field and laboratory experiments, CH$\sb4$ consumption in a birch soil was sensitive to NH$\sb4\sp+$, whereas a spruce soil was unaffected. In the birch soil, NH$\sb4\sp+$ apparently inhibited methanotroph growth, rather than enzymatic CH$\sb4$ oxidation, whereas methanotrophs in the spruce soil were apparently insensitive to NH$\sb4\sp+$. These results suggest that the primary landscape-level control over the response of soil CH$\sb4$ consumption to NH$\sb4\sp+$-fertilization is the cross-site distribution of physiologically distinct CH$\sb4$ oxidizers.
    • The significance of marine-derived biogenic nitrogen in anadromous Pacific salmon freshwater food webs

      Kline, Thomas Clayton, Jr. (1991)
      The natural abundance of the stable isotope ratios $\sp{15}$N/$\sp{14}$N and $\sp{13}$C/$\sp{12}$C expressed as $\delta\sp{15}$N and $\delta\sp{13}$C was used to trace biogenic nutrients delivered by returning adult anadromous Pacific salmon into freshwater systems. These systems were Sashin Creek, a rapidly flushing stream located on Baranof Island, southeastern Alaska and Iliamna Lake, the major sockeye salmon, Oncorhynchus nerka, nursery lake in the Kvichak River watershed, Bristol Bay, southwestern Alaska. Marine-derived nitrogen (MDN) was quantifiable by use of an isotope mixing model based on comparison of biota $\delta\sp{15}$N in areas used for spawning by anadromous salmon with salmon-free controls within the same watershed. Control periphyton (benthic primary producers) $\delta\sp{15}$N values $\sim$0 suggested that the control N pool was derived from N$\sb2$ fixation without significant recycling. In contrast, periphyton abundant in areas of intense spawning activity or carcass aggregation had $\delta\sp{15}$N $\sim$ +7. These two values were the basis for comparison of $\delta\sp{15}$N values of higher trophic level biota. A mixing model relating $\delta\sp{15}$N to MDN with trophic level was used to estimate consumer MDN through incorporation of a priori isotopic trophic enrichment factors established in the literature. Distinctive $\delta\sp{13}$C signatures along the Sashin Creek stream gradient and between Iliamna Lake littoral and limnetic production were used in concert with $\delta\sp{15}$N. Sashin Creek fishes reflected isotopic signatures of periphyton and thus production within the same stream section. Isotopic data suggested an overall importance of limnetic production in Iliamna Lake resident fish and juvenile sockeye salmon diets. Salmon eggs and emergent fry retaining the parental marine isotopic signature were distinguishable from autochthonous production derived from marine N, and appear to be a minor dietary component in both Sashin Creek or Iliamna Lake fishes. The proportion of MDN in resident fish N, including juvenile salmon after turnover of the natal N pool, was proportional to the escapement of spawners. Thus there is now direct evidence for a significant natural fertilization process: the flow of remineralized marine-derived biogenic nutrients from returning anadromous Pacific salmon into freshwater food webs.