Now showing items 1-20 of 10404

    • The Level 2018-08

      Services, Facilities (University of Alaska Southeast, 2018-08)
    • Alaska Earthquake Center Quarterly Technical Report January-March 2022

      Ruppert, Natalia (2022-05)
      This series of technical quarterly reports from the Alaska Earthquake Center (AEC) includes detailed summaries and updates on Alaska seismicity, the AEC seismic network and stations, field work, our social media presence, and lists publications and presentations by AEC staff. Multiple AEC staff members contribute to this report. It is issued in the following month after the completion of each quarter Q1: January-March, Q2: April-June, Q3: July-September, and Q4: October-December. First report was published for January-March, 2021.
    • Untapped Talent: Immigrant Integration and Inclusion in Anchorage, Alaska

      Gat, Nyabony; Kuhn, Shannon; Buckingham, Sara L.; Mbise, Amana; Chen, Tzu-Chiao; Sytniak, Sofia (2022-05)
      Untapped Talent is a study of immigrants’ integration and inclusion in Anchorage with respect to education, employment, health care, access to public spaces, interactions with government agencies, social networks, and developing a sense of home. In this report, the term ‘immigrant’ is used for all people who moved from another country to the United States after their birth to live here indefinitely, including refugees, asylees, and asylum-seekers. The research team applied both quantitative and qualitative methods to uncover the results. In this document, we share findings and summarize what may help immigrants feel more at home in Anchorage.
    • The Level 2018-04

      Services, Facilities (University of Alaska Southeast, 2018-04)
    • Current exposure of Yukon Flats tribal villages' residents to PM₂.₅ from natural and anthropogenic sources: establishing baselines for climate change adaptation and resilience

      Edwin, Stanley G.; Mölders, Nicole; Collins, Richard L.; Fochesatto, Javier; Stuefer, Martin (2020-08)
      How healthy is the air in the villages during the summer fire seasons? Why does Fort Yukon always seem to be colder than the surrounding villages in winter and spring? How healthy is the air we breathe in our homes and workplaces? These are but a few of the questions asked by Alaska's Eastern Interior residential village's Indigenous Tribal Governments. A tribal-owned network of aerosol monitors and meteorological stations was installed at Ts'aahudaaneekk'onh Denh, Gwichyaa Zheh, Jałgiitsik, and Danzhit Khànlaj̜j̜ in the Yukon Flats, Alaska. To assess the exposure of residents in rural communities in the Yukon Flats to particulate matter of 2.5 [micro]m or less in diameter (PM2.5), both indoor and outdoor concentration observations were carried out from spring 2017 through to August 2019. Surface-based-temperature inversions occurred under calm wind conditions due to surface radiative cooling. In May, local emissions governed air quality with worst conditions related to road and river dust. As the warm season progressed, worst air quality was due to transport of pollutants from upwind wildfires. Absorption of solar radiation in the smoke layer and upward scattering enhanced stability and fostered the persistence of the surface-based-temperature inversions. Under weak large-scale forcing mountain-valley circulations develop that are driven by the differences in insolation. During the long dark nights, surface radiative cooling occurs in the near-surface layer of the mountain slopes of the Brooks, Ogilvie and White Mountains Ranges and at the bottom of the valley. Here surface-based-temperature inversion - known as roof-top inversions - form, while the cold air drains from the slopes. A frontal wedge forms when the cold air slides over the relatively colder air in the valley. Drainage of cold air from the Brooks Range governed the circulation and cold air pooling in the valley. At the site, which is closest to the mountains, concentrations marginally changed in the presence of temperature inversions. Indoor concentrations were measured at 0.61 m in homes and at 1.52 m heights both in homes and office/commercial buildings. Air quality was better at both heights in cabins than frame homes both during times with and without surface-based-temperature inversions. During summer indoor concentrations reached unhealthy for sensitive groups to hazardous conditions for extended times that even exceeded the high outdoor concentrations. Indoor and outdoor concentrations were strongest related for office/commercial buildings, followed by frame houses and cabins. These are but a few of the answers found in this research of meteorology effects, unhealthy locations for breathing PM2.5 air outdoors and in homes.
    • Audiocassette tape digitizing instructions

      Schmuland, Arlene B. (2022)
      Step by step instructions for digitizing audiocassettes using Audacity as the audio software and a Tascam 202 Mark VII tape deck.
    • Evolution of marine organisms under climate change at different levels of biological organisation.

      Harvey, Ben P.; Al-Janabi, Balsam; Broszeit, Stefanie; Cioffi, Rebekah; Kumar, Amit; Aranguren-Gassi, Maria; Bailey, Allison; Green, Leon; Gsottbauer, Carina M.; Hall, Emilie F.; et al. (Multidisciplinary Digital Publishing Institute, 2014)
      Research to date has suggested that both individual marine species and ecological processes are expected to exhibit diverse responses to the environmental effects of climate change. Evolutionary responses can occur on rapid (ecological) timescales, and yet studies typically do not consider the role that adaptive evolution will play in modulating biological responses to climate change. Investigations into such responses have typically been focused at particular biological levels (e.g., cellular, population, community), often lacking interactions among levels. Since all levels of biological organisation are sensitive to global climate change, there is a need to elucidate how different processes and hierarchical interactions will influence species fitness. Therefore, predicting the responses of communities and populations to global change will require multidisciplinary efforts across multiple levels of hierarchy, from the genetic and cellular to communities and ecosystems. Eventually, this may allow us to establish the role that acclimatisation and adaptation will play in determining marine community structures in future scenarios.
    • Seawater acidification more than warming presents a challenge for two Antarctic macroalgal-associated amphipods

      Schram, Julie B.; Schoenrock, Kathryn M.; McClintock, James B.; Amsler, Charles D.; Angus, Robert A. (Inter-Research, 2016-07-08)
      Elevated atmospheric pCO2 concentrations are triggering seawater pH reductions and seawater temperature increases along the western Antarctic Peninsula (WAP). These factors in combination have the potential to influence organisms in an antagonistic, additive, or synergistic manner. The amphipods Gondogeneia antarctica and Paradexamine fissicauda represent prominent members of macroalgal-associated mesograzer assemblages of the WAP. Our primary objective was to investigate amphipod behavioral and physiological responses to reduced seawater pH and elevated temperature to evaluate potential cascading ecological impacts. For 90 d, amphipods were exposed to combinations of seawater conditions based on present ambient (pH 8.0, 1.5°C) and predicted end-of-century conditions (pH 7.6, 3.5°C). We recorded survival, molt frequency, and macroalgal consumption rates as well as change in wet mass and proximate body composition (protein and lipid). Survival for both species declined significantly at reduced pH and co-varied with molt frequency. Consumption rates in G. antarctica were significantly higher at reduced pH and there was an additive pH−temperature effect on consumption rates in P. fissicauda. Body mass was reduced for G. antarctica at elevated temperature, but there was no significant effect of pH or temperature on body mass in P. fissicauda. Exposure to the pH or temperature levels tested did not induce significant changes in whole body biochemical composition of G. antarctica, but exposure to elevated temperature resulted in a significant increase in whole body protein content of P. fissicauda. Our study indicates that while elevated temperature causes sub-lethal impacts on both species of amphipods, reduced pH causes significant mortality.
    • Ocean warming and acidification alter Antarctic macroalgal biochemical composition but not amphipod grazer feeding preferences

      Schram, Julie B.; Schoenrock, Kathryn M.; McClintock, James B.; Amsler1, Charles D.; Angus, Robert A. (Inter-Research, 2017-10-13)
      Increased anthropogenic atmospheric CO2 concentrations have resulted in ocean warming and alterations in ocean carbonate chemistry, decreasing seawater pH (ocean acidification). The combination of ocean warming and acidification (OWA) may alter trophic interactions in marine benthic communities along the western Antarctic Peninsula (WAP). Abundant and diverse macroalgae–grazer assemblages, dominated by macroalgae (e.g. chemically defended Desmarestia anceps and D. menziesii) and gammarid amphipods (e.g. Gondogeneia antarctica), occur on the nearshore benthos along the WAP. In the present study, the amphipod G. antarctica and macroalgae D. anceps and D. menziesii were exposed for 39 and 79 d, respectively, to combinations of current and predicted near-future temperature (1.5 and 3.5°C, respectively) and pH (8.0 and 7.6, respectively). Protein and lipid levels of macroalgal tissues were quantified, and 5-way choice amphipod feeding assays were performed with lyophilized macroalgal tissues collected at time zero and following exposure to the 4 temperature-pH treatments. For D. anceps, we found a significant interactive temperature-pH effect on lipid levels and significantly lower protein levels at reduced pH. In contrast, tissues of D. menziesii exhibited significantly greater lipid levels after exposure to reduced pH, but there was no temperature effect on lipid or protein levels. Despite shifts in macroalgal biochemical composition, there were no changes in amphipod feeding preferences. Our results indicate that despite altered macroalgal nutritional quality under OWA, both macroalgae retained their ability to deter amphipod feeding. This deterrent capacity could become an important contributor to net community resistance of macroalgae−mesograzer assemblages of the WAP to predicted OWA.
    • Trophic Transfer of Macroalgal Fatty Acids in Two Urchin Species: Digestion, Egestion, and Tissue Building

      Schram, Julie B.; Kobelt, Julia N.; Dethier, Megan N.; Galloway, Aaron W. E. (Frontiers in Ecology and Evolution, 2018-06-19)
      Sea urchins are ecosystem engineers of nearshore benthic communities because of their influence on the abundance and distribution of macroalgal species. Urchins are notoriously inefficient in assimilation of their macroalgal diets, so their fecal production can provide a nutritional subsidy to benthic consumers that cannot capture and handle large macroalgae. We studied the assimilation of macroalgal diets by urchins by analyzing the profiles of trophic biomarkers such as fatty acids (FAs). We tracked macroalgal diet assimilation in both Strongylocentrotus droebachiensis and S. purpuratus. Juvenile S. droebachiensis and adult S. purpuratus were maintained for 180 and 70 days, respectively, on one of three monoculture diets from three algal phyla: Nereocystis luetkeana, Pyropia sp., or Ulva sp. We then analyzed FA profiles of the macroalgal tissue fed to urchins as well as urchin gonad, gut, digesta, and egesta (feces) to directly evaluate trophic modification and compare nutritional quality of urchin food sources, urchin tissues, and fecal subsidies. In the S. purpuratus assay, there were significantly more total lipids in the digesta and egesta than in the algae consumed. The FA profiles of urchin tissues differed among urchin species, all diets, and tissue types. Despite these differences, we observed similar patterns in the relationships between the urchin and macroalgal tissues for both species. Egesta produced by urchins fed each of the three diets were depleted with respect to the concentration of important long chain polyunsaturated fatty acids (LCPUFAs), but did not differ significantly from the source alga consumed. Both urchin species were shown to synthesize and selectively retain both the precursor and resulting LCPUFAs involved in the synthesis of the LCPUFAs 20:4ω6 and 20:5ω3. S. droebachiensis and S. purpuratus exhibited consistent patterns in the respective depletion and retention of precursor FAs and resulting LCPUFAs of Pyropia and Ulva tissues, suggesting species level control of macroalgal digestion or differential tissue processing by gut microbiota. For both S. droebachiensis and S. purpuratus, macroalgal diet was a surprisingly strong driver of urchin tissue fatty acids; this indicates the potential of fatty acids for future quantitative trophic estimates of urchin assimilation of algal phyla in natural settings.
    • The Purple Sea Urchin Strongylocentrotus purpuratus Demonstrates a Compartmentalization of Gut Bacterial Microbiota, Predictive Functional Attributes, and Taxonomic Co-Occurrence

      Hakim, Joseph A.; Schram, Julie B.; Galloway, Aaron W. E.; Morrow, Casey D.; Crowley, Michael R.; Watts, Stephen A.; Bej, Asim K. (Multidisciplinary Digital Publishing Institute, 2019-01-26)
      The sea urchin Strongylocentrotus purpuratus (order Camarodonta, family Strongylocentrotidae) can be found dominating low intertidal pool biomass on the southern coast of Oregon, USA. In this case study, three adult sea urchins were collected from their shared intertidal pool, and the bacteriome of their pharynx, gut tissue, and gut digesta, including their tide pool water and algae, was determined using targeted high-throughput sequencing (HTS) of the 16S rRNA genes and bioinformatics tools. Overall, the gut tissue demonstrated Arcobacter and Sulfurimonas (Epsilonproteobacteria) to be abundant, whereas the gut digesta was dominated by Psychromonas (Gammaproteobacteria), Propionigenium (Fusobacteria), and Flavobacteriales (Bacteroidetes). Alpha and beta diversity analyses indicated low species richness and distinct microbial communities comprising the gut tissue and digesta, while the pharynx tissue had higher richness, more closely resembling the water microbiota. Predicted functional profiles showed Kyoto Encyclopedia of Genes and Genomes (KEGG) Level-2 categories of energy metabolism, membrane transport, cell motility, and signal transduction in the gut tissue, and the gut digesta represented amino acid, carbohydrate, vitamin and cofactor metabolisms, and replication and repair. Co-occurrence network analysis showed the potential relationships and key taxa, such as the highly abundant Arcobacter and Propionigenium, influencing population patterns and taxonomic organization between the gut tissue and digesta. These results demonstrate a trend of microbial community integration, allocation, predicted metabolic roles, and taxonomic co-occurrence patterns in the S. purpuratus gut ecosystem.
    • Receding Glacier: Memories in Rock Walls

      Meadow, Olive (Brend); Brend, Olive Mallory (2022-04)
    • Artistic Statement

      Meadow, Olive (Brend); Brend, Olive Mallory (2022-04-03)
    • Eelgrass pathogen Labyrinthula zosterae synthesizes essential fatty acids

      Yoshioka, R. M.; Schram, Julie B.; Galloway, Aaron W. E. (Inter-Research, 2019-07-25)
      Negative consequences of parasites and disease on hosts are usually better understood than their multifaceted ecosystem effects. The pathogen Labyrinthula zosterae (Lz) causes eelgrass wasting disease but has relatives that produce large quantities of nutritionally valuable long-chain polyunsaturated fatty acids (LCPUFA) such as docosahexaenoic acid (DHA). Here we quantify the fatty acids (FA) of Lz cultured on artificial media, eelgrass-based media, and eelgrass segments to investigate whether Lz may similarly produce LCPUFA. We also assess whether fieldcollected lesions show similar FA patterns to laboratory-inoculated eelgrass. We find that Lz produces DHA as its dominant FA along with other essential FA on both artificial and eelgrass-based media. DHA content was greater in both laboratory-inoculated and field-collected diseased eelgrass relative to their respective controls. If Lz’s production scales in situ, it may present an unrecognized source of LCPUFA in eelgrass ecosystems.
    • Ghost Factors of Laboratory Carbonate Chemistry Are Haunting Our Experiments

      Galloway, Aaron W. E.; Dassow, G. Von; Schram, Julie B.; Klinger, T.; Hill, T. M.; Lowe, A. T.; Chan, F.; Yoshioka, R. M.; Kroeker, K. J. (The University of Chicago, 2020-10-23)
      For many historical and contemporary experimental studies in marine biology, seawater carbonate chemistry remains a ghost factor, an uncontrolled, unmeasured, and often dynamic variable affecting experimental organisms or the treatments to which investigators subject them. We highlight how environmental variability, such as seasonal upwelling and biological respiration, drive variation in seawater carbonate chemistry that can influence laboratory experiments in unintended ways and introduce a signal consistent with ocean acidification. As the impacts of carbonate chemistry on biochemical pathways that underlie growth, development, reproduction, and behavior become better understood, the hidden effects of this previously overlooked variable need to be acknowledged. Here we bring this emerging challenge to the attention of the wider community of experimental biologists who rely on access to organisms and water from marine and estuarine laboratories and who may benefit from explicit considerations of a growing literature on the pervasive effects of aquatic carbonate chemistry changes.
    • Anchoring the sky

      Kaynor, Carol; Crouse, David; Soos, Frank; Box, Mark (2010-05)
      'Anchoring the Sky' chronicles the narrator's experiences over a period of more than twenty years after her younger sister is diagnosed with cancer, rallies for a short time, and then dies. The narration, which follows a roughly chronological structure with some flashbacks, is divided into three sections. The first section describes the narrator's initial experiences of caregiving in a chaotic household, ending on a note of hope. The second section describes the loss of hope, the sister's death, and the narrator's experiences of intense grief immediately afterward. In the third section, the narrator describes selected moments in a 20-year quest for some sense of resolution over her sister's death. Throughout the story, the narrator vacillates between emotive and objective expression as she struggles to come to terms with both the loss of her sister and with the loss of long-term memories caused by the narrator's own chronic illness. Though she never finds the magical resolution she seeks, she finally finds support and assistance both for her loss of precious memories and her unresolved grief by reconnecting with her family's experiences during her sister's illness and death
    • The Level 2020-02

      Leigh, Nathan; Zenger, Adam; George, Greg (University of Alaska Southeast, 2020-02-17)
    • Granular decoherence precedes ice mélange failure and glacier calving at Jakobshavn Isbræ

      Cassotto, Ryan; Burton, Justin C.; Amundson, Jason M.; Fahnestock, Mark; Truffer, Martin (Springer Nature, 2021-05-27)
      The stability of the world’s largest glaciers and ice sheets depends on mechanical and thermodynamic processes occurring at the glacier–ocean boundary. A buoyant agglomeration of icebergs and sea ice, referred to as ice mélange, often forms along this boundary and has been postulated to affect ice-sheet mass losses by inhibiting iceberg calving. Here, we use terrestrial radar data sampled every 3 min to show that calving events at Jakobshavn Isbræ, Greenland, are preceded by a loss of flow coherence in the proglacial ice mélange by up to an hour, wherein individual icebergs flowing in unison undergo random displacements. A particle dynamics model indicates that these fluctuations are likely due to buckling and rearrangements of the quasi-two-dimensional material. Our results directly implicate ice mélange as a mechanical inhibitor of iceberg calving and further demonstrate the potential for real-time detection of failure in other geophysical granular materials.
    • Integral functions of marine vertebrates in the ocean carbon cycle and climate change mitigation

      Martin, A.H.; Pearson, Heidi C.; Saba, G.K.; Olsen, E.M. (Cell Press, 2021-05-21)
      In the last decade, the ocean has absorbed a quarter of the Earth’s greenhouse gas emissions through the carbon (C) cycle, a naturally occurring process. Aspects of the ocean C cycle are now being incorporated into climate change mitigation and adaptation plans. Currently, too little is known about marine vertebrate C functions for their inclusion in policies. Fortunately, marine vertebrate biology, behavior, and ecology through the lens of C and nutrient cycling and flux is an emerging area of research that is rich in existing data. This review uses literature and trusted data sources to describe marine vertebrate C interactions, provides quantification where possible, and highlights knowledge gaps. Implications of better understanding the integral functions of marine vertebrates in the ocean C cycle include the need for consideration of these functions both in policies on nature-based climate change mitigation and adaptation, and in management of marine vertebrate populations.
    • Assessing the Behavioural Responses of Small Cetaceans to Unmanned Aerial Vehicles

      Castro, J.; Borges, F. O.; Cid, A.; Laborde, M. I.; Rosa, R.; Pearson, Heidi C. (Multidisciplinary Digital Publishing Institute, 2021-01-05)
      Unmanned Aerial Vehicles (UAVs), or drones, have recently emerged as a relatively affordable and accessible method for studying wildlife. Vertical Take-off and Landing (VTOL) UAVs are appropriate for morphometric, behavioural, abundance and demographic studies of marine mammals, providing a stable, nonintrusive and highly manoeuvrable platform. Previous studies using VTOL UAVs have been conducted on various marine mammal species, but specific studies regarding behavioural responses to these devices are limited and scarce. The aim of this study was to evaluate the immediate behavioural responses of common (Delphinus delphis) and bottlenose (Tursiops truncatus) dolphins to a VTOL UAV flown at different altitudes. A multirotor (quadcopter) UAV with an attached GoPro camera was used. Once a dolphin group was located, the UAV was flown at a starting height of 50 m directly above the group, subsequently descending 5 m every 30 s until reaching 5 m. We assessed three behavioural responses to a VTOL UAV at different heights: (i) direction changes, (ii) swimming speed and (iii) diving. Responses by D. delphis (n = 15) and T. truncatus (n = 10) groups were analysed separately. There were no significant responses of T. truncatus to any of the studied variables. For D. delphis, however, there were statistically significant changes in direction when the UAV was flown at a height of 5 m. Our results indicate that UAVs do not induce immediate behavioural responses in common or bottlenose dolphins when flown at heights > 5 m, demonstrating that the use of VTOL UAVs to study dolphins has minimal impact on the animals. However, we advise the use of the precautionary principle when interpreting these results as characteristics of this study site (e.g., high whale-watching activity) may have habituated dolphins to anthropogenic disturbance.