ScholarWorks@UA

Sagavanirktok River Spring Breakup Observations 2015

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Toniolo, H.
dc.contributor.author Youcha, E.K.
dc.contributor.author Gieck, R.E.
dc.contributor.author Tschetter, T.
dc.contributor.author Engram, M.
dc.contributor.author Keech, J.
dc.date.accessioned 2019-06-11T17:33:23Z
dc.date.available 2019-06-11T17:33:23Z
dc.date.issued 2015-12
dc.identifier.uri http://hdl.handle.net/11122/10390
dc.description.abstract Alaska’s economy is strongly tied to oil production, with most of the petroleum coming from the Prudhoe Bay oil fields. Deadhorse, the furthest north oil town on the Alaska North Slope, provides support to the oil industry. The Dalton Highway is the only road that connects Deadhorse with other cities in Interior Alaska. The road is heavily used to move supplies to and from the oil fields. In late March and early April 2015, the Dalton Highway near Deadhorse was affected by ice and winter overflow from the Sagavanirktok River, which caused the road’s closure two times, for a total of eleven days (four and seven days, respectively). In mid-May, the Sagavanirktok River at several reaches flooded the Dalton from approximately milepost (MP) 394 to 414 (Deadhorse). The magnitude of this event, the first recorded since the road was built in 1976, was such that the Dalton was closed for nearly three weeks. During that time, a water station and several pressure transducers were installed to track water level changes on the river. Discharge measurements were performed, and water samples were collected to estimate suspended sediment concentration. Water levels changed from approximately 1 m near MP414 to around 3 m at the East Bank station, located on the river’s east bank (about MP392). Discharge measurements ranged from nearly 400 to 1560 m3/s, with the maximum measurement roughly coinciding with the peak. Representative sediment sizes (D50) ranged from 10 to 14 microns. Suspended sediment concentrations ranged from a few mg/L (clear water in early flooding stages) to approximately 4500 mg/L. An analysis of cumulative runoff for two contiguous watersheds—the Putuligayuk and Kuparuk—indicates that 2014 was a record-breaking year in both watersheds. Additionally, an unseasonable spell of warm air temperatures was recorded during mid-February to early March. While specific conditions responsible for this unprecedented flood are difficult to pinpoint, runoff and the warm spell certainly contributed to the flood event. en_US
dc.description.tableofcontents ABSTRACT ..................................................................................................................................... i LIST OF FIGURES ....................................................................................................................... iii LIST OF TABLES .......................................................................................................................... v ACKNOWLEDGMENTS AND DISCLAIMER .......................................................................... vi CONVERSION FACTORS, UNITS, WATER QUALITY UNITS, VERTICAL AND HORIZONTAL DATUM, ABBREVIATIONS, AND SYMBOLS ............................................ vii ABBREVIATIONS, ACRONYMS, AND SYMBOLS ................................................................ ix 1 INTRODUCTION ................................................................................................................... 1 2 STUDY AREA ........................................................................................................................ 5 3 METHODOLOGY AND EQUIPMENT ................................................................................ 9 3.1 Ice Elevations Prior to Breakup (GPS Surveys)............................................................. 10 3.2 X-Band SAR Analysis ................................................................................................... 11 3.3 Water Levels .................................................................................................................. 12 3.4 Acoustic Doppler Current Profiler ................................................................................. 14 3.5 Discharge Measurements ............................................................................................... 15 3.6 Suspended Sediments ..................................................................................................... 17 4 RESULTS .............................................................................................................................. 18 4.1 Air Temperature ............................................................................................................. 18 4.2 Annual Precipitation ....................................................................................................... 20 4.3 Cold Season Precipitation .............................................................................................. 22 4.4 Warm Season Precipitation ............................................................................................ 23 4.5 Surface Water Hydrology............................................................................................... 27 4.5.1 Ice Elevations .......................................................................................................... 28 4.5.2 X-Band SAR Analysis ............................................................................................ 31 4.5.3 Water Levels ........................................................................................................... 37 4.5.4 Discharge Measurements ........................................................................................ 43 4.5.5 Additional Field Observations ................................................................................ 49 4.5.6 Cumulative Volumetric Warm Season Runoff ....................................................... 59 4.5.7 Suspended Sediment ............................................................................................... 63 5 CONCLUSIONS ................................................................................................................... 66 6 REFERENCES ...................................................................................................................... 68 7 APPENDICES ....................................................................................................................... 72 iii en_US
dc.language.iso en_US en_US
dc.title Sagavanirktok River Spring Breakup Observations 2015 en_US
dc.type Technical Report en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search ScholarWorks@UA


Advanced Search

Browse

My Account

Statistics