A COMPREHENSIVE ANALYSIS OF THE OIL FIELDS OF THE NORTH SLOPE OF ALASKA, THEIR USE AS ANALOGS, RECENT EXPLORATION, AND FORECASTED ROYALTY AND PRODUCTION TAX REVENUE

By

Joshua J. Michie

Dr. Shirish Patil, Advisory Committee Chair

Dr. Abhijit Dandekar, Advisory Committee Member

Dr. Santanu Khataniar, Advisory Committee Member

Dr. Vikas Sonwalkar, Advisory Committee Member

Spring 2018
A COMPREHENSIVE ANALYSIS OF THE OIL FIELDS OF THE NORTH SLOPE OF ALASKA, THEIR USE AS ANALOGS, RECENT EXPLORATION, AND FORECASTED ROYALTY AND PRODUCTION TAX REVENUE

A PROJECT

Presented to the Faculty

of the University of Alaska Fairbanks

in Partial Fulfilment of the Requirements

for the Degree of

MASTER OF SCIENCE

by

Joshua J. Michie, P.E.

Spring 2018
ABSTRACT

Revenues from petroleum production supply most of the revenue for unrestricted general funds for the State of Alaska. As such, variations in the price of oil, decline from existing production and new developments greatly affect the money available for the state to spend on everything from roads to education. This study reviewed all producing oil fields on the North Slope, characterized their reservoir performance and forecasted future production. This was coupled with analysis of recent exploration discoveries and ongoing project developments to forecast future North Slope production and create potential royalty and production tax revenue forecasts. After 40 years of production, Prudhoe Bay remains the dominant field on the North Slope, accounting for 45% of current production. Relatively large changes in the non-anchor field pools are only able to change North Slope production by a couple of percent due to the nature of their size compared to Prudhoe Bay, Kuparuk and Alpine. New developments however, are able to materially contribute to changes in North Slope production if they are large enough. With continued activity in the many fields, creating an accurate forecast is challenging, however, without new developments, the Trans Alaska Pipeline will need to make changes to accommodate low flow rates. Currently identified new developments have the potential to extend current production rates 10-20 years. Some of these announced developments and discoveries have announced productivity rates that are not realistic compared to analog well performance, and will likely require many more wells to achieve the announced rates and volumes.
Table of Contents

Abstract .. iii

Table of Contents ... iv

Table of Figures ... vii

Table of Tables ... xvi

Disclaimer .. xvii

Acknowledgements ... xviii

1. Introduction .. 1

2. North Slope Geology ... 1

3. Overview of North Slope Production ... 2

4. NGL Production ... 4

5. North Slope Reservoir Trends ... 5

6. North Slope Units ... 19

7. Badami ... 19

8. Colville River .. 21

8.1. Alpine .. 23

8.2. Fiord .. 26

8.3. Nanuq .. 28

8.4. Qannik .. 29

9. Duck Island ... 31

9.1. Eider ... 32

9.2. Endicott .. 33

9.3. Sag Delta North ... 35

9.4. Minke .. 36

10. Kuparuk River ... 37

10.1. Kuparuk .. 38

10.2. Meltdown .. 44

10.3. Tabasco .. 45

10.4. Tarn ... 46

10.5. West Sak .. 47

11. Milne Point .. 48

11.1. Milne Kuparuk ... 49

11.2. Milne Sag River .. 51

11.3. Milne Schrader Bluff .. 52

11.4. Milne Ugnu ... 53

12. Nikaitchuq .. 55
| 12.1 | Field Development | 57 |
| 13 | Northstar | 63 |
| 13.1 | Northstar | 65 |
| 13.2 | Northstar Kuparuk | 67 |
| 14 | Oooguruk | 68 |
| 14.1 | Oooguruk Kuparuk | 70 |
| 14.2 | Oooguruk Nuiqsut | 75 |
| 14.3 | Oooguruk Torok | 80 |
| 15 | Prudhoe Bay Unit | 83 |
| 15.1 | Aurora | 85 |
| 15.2 | Borealis | 87 |
| 15.3 | Lisburne | 88 |
| 15.3.1 | Geology | 89 |
| 15.3.2 | Original Development | 93 |
| 15.3.3 | 1980's Waterflood Pilot | 96 |
| 15.3.4 | Alapah | 97 |
| 15.3.5 | Lisburne Coil Sidetrack Campaign | 97 |
| 15.3.6 | Current Lisburne Waterflood Pilot | 98 |
| 15.3.7 | Current Lisburne Drilling Development | 98 |
| 15.4 | Midnight Sun | 101 |
| 15.5 | North Prudhoe Bay | 102 |
| 15.6 | Orion | 104 |
| 15.7 | Polaris | 106 |
| 15.8 | Prudhoe Bay | 108 |
| 15.9 | Point McIntyre | 120 |
| 15.10 | West Beach | 121 |
| 15.11 | Put River | 123 |
| 16 | Point Thomson | 124 |
| 17 | Current Exploration | 125 |
| 17.1 | Mustang | 126 |
| 17.2 | Pikka | 128 |
| 17.2.1 | Exploration History | 128 |
| 17.2.2 | Development | 130 |
| 17.3 | Horseshoe | 133 |
| 17.4 | Smith Bay | 134 |
| 17.5 | Nuna | 136 |
| 17.6 | Harrison Bay | 137 |
TABLE OF FIGURES

Figure 1: North Slope Stratigraphic Column (Alaska Department of Natural Resources, DOG, 2017) 2
Figure 2: North Slope Production by Unit ... 3
Figure 3: Percentage of North Slope Production by Unit ... 3
Figure 4: First Half 2017 North Slope Production Sources by Field ... 4
Figure 5: Sources of 2016 North Slope NGL Production .. 5
Figure 6: Cum Oil/Lifetime Wells (mmbo) vs Average Producer:Injector Ratio .. 6
Figure 7: Average Production/Active Well for Anchor Fields from 2010-2017 ... 7
Figure 8: Average Production/Active Well (bopd/well) for Anchor Fields ... 7
Figure 9: Average Production/Active Producer (bopd/well) for Anchor Fields ... 8
Figure 10: Average Production/Active Well 2015-2017, Selected Fields ... 8
Figure 11: Average Production/Active Well (bopd/well) Fields with Alpine Like Formation 9
Figure 12: Average Production/Active Well (bopd/well) Fields with Brookian Formation 9
Figure 13: Average Production/Active Well (bopd/well) Fields with Ivishak/Sag Formation 10
Figure 14: Average Production/Active Well (bopd/well) Fields with Kuparuk Like Formation 10
Figure 15: Average Production/Active Well (bopd/well) Fields with Schrader Bluff Like Formation 11
Figure 16: KH/μ vs. Cum Oil/Lifetime Wells Drilled by Field .. 12
Figure 17: Cum Oil/Active Producer Profile vs. Producer:Injector Ratio Adjusted Cum Oil/Producer by Field 12
Figure 18: Original Gas Oil Ratio vs. Oil Gravity .. 13
Figure 19: Original Gas Oil Ratio vs. Original Formation Volume Factor ... 13
Figure 20: Reference Datum vs. Original Gas Oil Ratio ... 14
Figure 21: Original Formation Volume Factor vs. Oil Gravity ... 14
Figure 22: Reference Datum vs. Original Formation Volume Factor ... 15
Figure 23: Reference Datum vs. Oil Gravity .. 15
Figure 24: Reference Datum vs. Porosity .. 16
Figure 25: Permeability vs. Porosity ... 16
Figure 26: Reference Datum vs. Oil Viscosity .. 17
Figure 27: Depth vs. Oil Viscosity (Paskvan, et al., 2016) ... 17
Figure 28: GOR vs. Oil Viscosity .. 18
Figure 29: Oil Gravity vs. Viscosity .. 18
Figure 30: Reference Datum vs. Bubble Point ... 19
Figure 31: Badami Location Map (Repp & Ennis, 1999) ... 20
Figure 32: Badami Project Development Gantt Chart (Repp & Ennis, 1999) ... 20
Figure 33: Badami Unit Production .. 21
Figure 34: Badami Field Production ... 21
Figure 35: Colville River Unit Map (ConocoPhillips, 2017) .. 22
Figure 36: Colville River Production ... 22
Figure 37: Colville River Unit Stratigraphic Column (Alvord, et al., 2009) ... 23
Figure 38: Alpine Field Map (Schneider, Ulrich, Hodge, Barree, & Martin) .. 23
Figure 39: Alpine Composit Type Log (Schneider, Ulrich, Hodge, Barree, & Martin) ... 24
Figure 40: Alpine Field Production ... 24
Figure 41: Alpine Drilling Permits by Year .. 25
Figure 42: Alpine Production and Well Count ... 25
Figure 43: Alpine Field Production and Average Active Well Production ... 26
Figure 44: Alpine Well Cum Oil to Date by Permit Year ... 26
Figure 45: Colville River Unit Participating Areas Map 2017 (ConocoPhillips, 2017) ... 27
Figure 46: Fiord Field Production .. 27
Figure 47: Fiord Production and Well Count ... 28
Figure 48: Nanuq Field Production .. 28
Figure 242: Hypothetical Nuna Development Profile

Figure 243: Harrison Bay Project Area Map (ENI US Operating Co. Inc., 2017)

Figure 244: Harrison Bay Extended Reach compared to Other Alaskan Wells (ENI US Operating Co. Inc., 2017)

Figure 245: Nikaitchuq North and Existing Development Trajectories (ENI US Operating Co. Inc., 2017)

Figure 246: GMT1 Location Map (Bureau of Land Management, 2014)

Figure 247: GMT1 Hypothetical Development Profile

Figure 248: Oil and Gas Accumulations in or Near Northeast NPRA from Houseknecht et al (Bureau of Land Management, 2016)

Figure 249: GMT2 Project Map (Bureau of Land Management, 2016)

Figure 250: GMT2 Hypothetical Development Profile

Figure 251: Recent Nanushuk and Torok Discoveries (Alaska Department of Natural Resources, DOG, 2017)

Figure 252: Hypothetical Willow Development Profile

Figure 253: Liberty Field Location (Hilcorp Alaska, LLC, 2015)

Figure 254: Libert Unit Map with Area Wells (Hilcorp Alaska, LLC, 2015)

Figure 255: Liberty Structure Map - Top Reservoir (Hilcorp Alaska, LLC, 2015)

Figure 256: Liberty Project Schedule (Hilcorp Alaska, LLC, 2015)

Figure 257: Liberty Proposed Development Profile (Hilcorp Alaska, LLC, 2015)

Figure 258: Hypothetical Liberty Forecast Based on Proposed Profile

Figure 259: Hypothetical Umiat Forecast Assuming Development in 2030

Figure 260: Trans Alaska Pipeline System (Alyeska Pipeline Service Company, 2011)

Figure 261: TAPS Critical Issues and Solutions at Low Flow (Alyeska Pipeline Service Company, 2011)

Figure 262: TAPS Cumulative Volume of Wax under Different Flow Rates (Alyeska Pipeline Service Company, 2011)

Figure 263: Scraper Pigs in Pipeline Under Low Flow (Alyeska Pipeline Service Company, 2011)

Figure 264: TAPS Water Hold-Up Under Low Flow (Alyeska Pipeline Service Company, 2011)

Figure 265: Impact of TAPS Throughput on Crude Oil Temperature (BP Pipelines Alaska, Inc, 2010)

Figure 266: Months of the Year Requiring Heat Under Low Flow (BP Pipelines Alaska, Inc, 2010)

Figure 267: TAPS Heating Requirement Under Low Flow (BP Pipelines Alaska, Inc, 2010)

Figure 268: TAPS Pipeline Temperature Profile at 70,000 bopd with Heat (BP Pipelines Alaska, Inc, 2010)

Figure 269: DOG Forecast Errors in Years 1-10 (Umekwe, 2017)

Figure 270: Actual Production vs. Forecasted Production (Umekwe, 2017)

Figure 271: North Slope Existing Field Production and Forecast by Unit

Figure 272: North Slope Forecasted Production with Low Flow Limits Highlighted

Figure 273: Division of Oil and Gas Forecasted Rates with Projects (Umekwe, 2017)

Figure 274: North Slope Forecasted Production with Exploration Development

Figure 275: North Slope Forecasted Production with Exploration Development 2010-2060

Figure 276: Forecasted North Slope Production Sources Distribution with Exploration

Figure 277: Alaska production Tax Estimation Based on DOR Forecasts of Oil Price and Revenue

Figure 278: State Revenue by Oil Price

Figure 279: State Revenue Distribution by Oil Price

Figure 280: Comparison of the Alaska DOR Production Forecast to the Study Forecast

Figure 281: Comparison of the Alaska DOR Revenue 10 year Forecast to the Study Forecast

Figure 282: Forecasted Alaska State Revenue from Petroleum Taxes and Royalties, $50/bbl

Figure 283: Forecasted Alaska State Revenue from Petroleum Taxes and Royalties, $75/BBL

Figure 284: Forecasted Alaska State Revenue from Petroleum Taxes and Royalties, $100/BBL

Figure 285: Forecasted Alaska State Revenue from Petroleum Taxes and Royalties, $50/BBL a 1%/year increase in Oil Price
Figure 286: Forecasted Alaska State Revenue from Petroleum Taxes and Royalties, $50/BBL with a 2%/year increase in Oil Price ...164
Figure 287: Recent North Slope Production by Unit ...166
Figure 288: Recent Percentage of North Slope Production by Unit ..166
Figure 289: 2016 North Slope Production Sources by Field ...167
Figure 290: 2015 North Slope Production Sources by Field ...167
Figure 291: 2014 North Slope Production Sources by Field ...168
Figure 292: Prudhoe Bay Oil and NGL Production ..170
Figure 293: Lisburne Oil and NGL Production ..171
Figure 294: Pt. McIntyre Oil and NGL Production ..171
Figure 295: West Beach Oil and NGL Production ..172
Figure 296: North Prudhoe Oil and NGL Production ..172
Figure 297: Niakuk Oil and NGL Production ..173
Figure 298: Raven Oil and NGL Production ..173
Figure 299: Northstar Oil and NGL Production ..174
Figure 300: Northstar Kuparuk Oil and NGL Production ..174
Figure 301: Endicott Oil and NGL Production ..175
Figure 302: Sag Delta North Oil and NGL Production ..175
Figure 303: Kuparuk Oil and NGL Production ..176
Figure 304: Average Production/Active Well (bopd/well) 2010-2017 Fields With Alpine Like Formation 176
Figure 305: Average Production/Active Well (bopd/well) 2010-2017 Fields With Brookian Formation 177
Figure 306: Average Production/Active Well (bopd/well) 2010-2017 Fields With Ivishak/Sag Formation 177
Figure 307: Average Production/Active Well (bopd/well) 2010-2017 Fields With Kuparuk Like Formation 178
Figure 308: Average Production/Active Well (bopd/well) 2010-2017 Fields With Schrader Bluff Like Formation ..178
Figure 309: Average Production/Active Well (bopd/well) 2010-2017 for Colville River Unit Fields 179
Figure 310: Average Production/Active Well (bopd/well) 2010-2017 for Duck Island Unit Fields 179
Figure 311: Average Production/Active Well (bopd/well) 2010-2017 for Kuparuk River Unit Fields 180
Figure 312: Average Production/Active Well (bopd/well) 2010-2017 for Milne Point Unit Fields 180
Figure 313: Average Production/Active Well (bopd/well) 2010-2017 for Northstar Unit Fields 181
Figure 314: Average Production/Active Well (bopd/well) 2010-2017 for Oooguruk Unit Fields 181
Figure 315: Average Production/Active Well (bopd/well) 2010-2017 for Prudhoe Bay Unit Fields 182
Figure 316: Average Production/Active Producer (bopd/well) Fields with ALPINE Like Formation 182
Figure 317: Average Production/Active Producer (bopd/well) Fields with Brookian Formation 183
Figure 318: Average Production/Active Producer (bopd/well) Fields with Ivishak/Sag Formation 183
Figure 319: Average Production/Active Producer (bopd/well) Fields Kuparuk Like Formation 184
Figure 321: KH/M VS. Cum Oil/Active Producer Profile by Field .. 185
Figure 322: Original Gas Oil Ratio Ranges grouped by Oil Quality .. 185
Figure 323: Original Formation Volume Factor Ranges Grouped by Oil Quality ... 186
Figure 324: Reference Datum vs. Original Pressure .. 186
Figure 325: Cum Oil vs. Total Wells by Field ... 187
Figure 326: Recent Badami Unit Production ... 187
Figure 327: Badami Production and Active Wells ... 188
Figure 328: Badami Gas Production and Injection Rates ... 188
Figure 329: Badami Gas Oil Ratio vs Cum Oil .. 189
Figure 330: Badami Watercut vs. Cum Oil ... 189
Figure 331: Badami Pressures .. 190
Figure 332: Badami Drilling Permits by Year .. 190
TABLE OF TABLES

Table 1: Average Recent NGL Percentage of Total Oil Production .. 4
Table 2: Nanuq Oil In Place and Recoverable Volumes (AOGCC, 2005) .. 28
Table 3: Qannik Well Data (Alvord, et al., 2009) .. 30
Table 4: Qannik Oil in Place and Recoverable Volumes (AOGCC, 2008) 31
Table 5: Nikaitchuq Field Well Count (ENI US Operating Co. Inc., 2017) 57
Table 6: Nikaitchuq Hydrocarbon Recovery (AOGCC, 2011) ... 63
Table 7: Oooguruk Kuparuk Oil in Place and Expected Recovery (AOGCC, 2012) 70
Table 8: Oooguruk Nuiqsut Oil In Place and Expected Recovery (AOGCC, 2008) 76
Table 9: Oooguruk Torok Oil In Place and Expected Recovery (AOGCC, 2012) 80
Table 10: 1984 vs 1991 Selected Reservoir Properties (Missman R, 1991) 93
Table 11: Harrison Bay Exploration Activities (ENI US Operating Co. Inc., 2017) 139
Table 12: Projected Crude Production from GMT1 As Predicted by the Alaska Department of Revenue (Bureau of Land Management, 2014) .. 140
Table 13: Comparison of Alternative Capital Expenditures, Royalties, and Taxes (in 2014 $ millions) (Bureau of Land Management, 2014) ... 141
Table 14: Liberty Reservoir Rock Properties (Hilcorp Alaska, LLC, 2015) 146
Table 15: Liberty Reservoir Fluid Properties (Hilcorp Alaska, LLC, 2015) 146
Table 16: Trans Alaska Pipeline Operating Assumptions Without External Heat (Alyeska Pipeline Service Company, 2011) ... 150
Table 17: Royalty + Tax Revenue of Project Forecast Under Selected Price Paths (Alaska Department of Revenue, 2018) ... 164
Table 18: Selected Reservoir Properties .. 169
Table 19: Selected Field Dynamics .. 170
DISCLAIMER

The data from this study has been taken from publicly available data and does not include proprietary or confidential information available to North Slope operators, owners, or government agencies. All analysis, opinions, and conclusions presented in this project are that of the author and do not represent the views, opinions, or positions of any operator or working interest owner of the fields analysed in this study. The author assumes no liability for decisions that utilize the data or analysis presented here.
ACKNOWLEDGEMENTS

I would like to the University of Alaska Petroleum Engineering department for making this possible, especially Dr. Samson Ning, Dr. Abhijit Dandekar, and Dr. Shirish Patil who enabled me to complete my coursework while working in Anchorage.

I would like to thank the members of my Graduate Advisory Committee, for their input into this project, their advice, and allowing me to graduate.

I would like to thank BP Exploration (Alaska) for partially funding the tuition of my coursework.

Most importantly, I would like to thank my wife Amanda Michie, who has moved from places she loved as my employment has required it, and has spent countless nights and weekends alone over the last nine years while I have worked to advance both my education and career.
1. INTRODUCTION

The intent of this study is twofold: The primary goal of the study is a review of North Slope reservoirs and to compile correlations and trends that can be used as analogs to predict future development performance. The second goal is to use this field analysis, coupled with the current known exploration development timelines, to predict the potential revenue that will potentially be obtained by the State of Alaska through royalties and production taxes. Much of the analysis in this report is taken from public data, some of which is given in ranges and sometimes varies by source. When ranges of data are given, the midpoint of the range was used in calculating numbers such as permeability, net thickness, and stock tank oil initially in place (STOIIP). When numbers varied from source to source, preference was given to numbers reported by the operator, then by date of report. An example of this would be the STOIIP of the Aurora field, which in Conservation Order 457 is reported to be between 110-146 MMSTB, whereas the 2011 publication “BP in Alaska” factbook lists it as 190 MMSTB (BP Exploration (Alaska) Inc., 2011). Similarly, BP in that factbook lists the Lisburne oil originally in place to be 2.4 billion barrels, while the joint ConocoPhillips and BP publication “Artic Energy” lists it at 1.8 billion barrels (BP Exploration (Alaska) Inc.; ConocoPhillips Alaska, 2006). All production and injection data was taken from the Alaska Oil and Gas Conservation Commission, as well as most reservoir properties. When a range in reservoir properties was given, but previously a single value had been reported, that value was used instead of the midpoint of the range. Although previously regularly updated on the AOGCC website, available pool statics have not been updated since 2012. Additionally, quantity and quality of public data on each field varied significantly, depending on the size, age, and operator. Production data for this study was sourced from the AOGCC, through July 2017. This study utilized an Access database and VBA enhanced Excel worksheets to develop the field trend plots. Additionally, many of the plots in this study utilized the statistical graphing software Spotfire. Individual field production forecasts were interpreted using Landmark’s Dynamic Surveillance System software.

2. NORTH SLOPE GEOLOGY

The North Slope of Alaska is has had a complex history with changing depositional directions and paleo shorelines. Producing reservoirs in the central North Slope are predominantly fluvially dominant or near shore marine clastic sandstones, with the exception of the Lisburne formation, which is a carbonate. Most fields fall into a series of regionally correlative formations such as the Ivishak, Kuparuk, and Schrader Bluff sands as seen in Figure 1. Although individual field properties vary, relative trends can be derived by comparing similar fields with fairly high confidence when planning new developments. With the recent discoveries of Willow, Horseshoe and Pikka there has been excitement in the Nanushuk formation and the potential for other reservoirs yet to be found in other clinoforms across the North Slope.
3. **Overview of North Slope Production**

Production from the North Slope through the Trans Alaska Pipeline (TAPS) began in June 1977, producing from the giant field Prudhoe Bay. Developments at Kuparuk, Endicott, Milne, and Lisburne followed in the next ten years with production peaking at over 2 million barrels of oil per day. From 1998-2000, developments at Badami, Alpine, and Northstar came online. In the past ten years developments at Oooguruk, Nikaitchuq, and Pt. Thomson have come online, averaging a combined 40,000 bopd. Throughout the years additional smaller satellite fields came online contributing greatly to the total production. It is a testament to the size and productivity of Prudhoe Bay that the initial participating area still accounts for 45% of North Slope production, even though there are forty producing pools. Supplemental North Slope field production charts can be found in the Appendix; Figure 287-Figure 291.
FIGURE 2: NORTH SLOPE PRODUCTION BY UNIT

FIGURE 3: PERCENTAGE OF NORTH SLOPE PRODUCTION BY UNIT
4. NGL Production

For some of the fields on the North Slope, NGL production is reported separately from oil production. This is true for Prudhoe Bay, North Star, Endicott, Sag Delta North, and the fields of GPMA (Lisburne, Pt. McIntyre, Niakuk, Raven, North Prudhoe and West Beach). Kuparuk reported producing 3.3 million barrels of NGLs between 1985 and 1988, but has not reported separate NGL production since. Northstar began reporting NGL production in November 2014. NGL blending is often limited by vapor pressure limitations to meet Alyeska specifications at Pump Station 1. NGL forecasts for this study were created based on a percentage of oil production of the associated pools. In 2016, NGL production averaged 44.7 mbd and the 16.36 million barrels produced accounted for 9.4% of total North Slope production. Individual field NGL profiles can be found in the Appendix, Figure 292-Figure 303.

<table>
<thead>
<tr>
<th>Field</th>
<th>NGL Percentage of Total Oil Production</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prudhoe Bay</td>
<td>16.6%</td>
</tr>
<tr>
<td>Lisburne</td>
<td>11.7%</td>
</tr>
<tr>
<td>Pt. McIntyre</td>
<td>7.3%</td>
</tr>
<tr>
<td>West Beach</td>
<td>11.5%</td>
</tr>
<tr>
<td>North Prudhoe</td>
<td>3.5%</td>
</tr>
<tr>
<td>Niakuk</td>
<td>2.0%</td>
</tr>
<tr>
<td>Raven</td>
<td>5.1%</td>
</tr>
<tr>
<td>Northstar</td>
<td>39.6%</td>
</tr>
<tr>
<td>Northstar Kuparuk</td>
<td>21.1%</td>
</tr>
<tr>
<td>Endicott</td>
<td>11.6%</td>
</tr>
<tr>
<td>Sag Delta North</td>
<td>0.5%</td>
</tr>
</tbody>
</table>
5. NORTH SLOPE RESERVOIR TRENDS

Analog field performance is one of the best tools for predicting how a new development, or a new well in an existing development will perform. When a press release for a discovery or a new field is published, there is often little associated data with the announcement. It is important to take a step back and analyse what parameters are needed for a field to produce 10 million or 10 billion barrels, the feasibility for fields to deliver 10,000 barrels per day or 100,000, and how many wells are needed to deliver those rates and volumes. Exploration wells typically target the places in a reservoir with the highest chance of success, and it is common for the earliest wells to have the best reservoir properties. These early wells also have the advantage of original reservoir pressure and saturation, and minimal inter-well competition. Assuming every well in a development to have similar productivity of the exploration and appraisal wells is a great way to promote and market a field; however, it will lead to a development that does not deliver promised rates and volumes for the number of expected wells. Prudhoe Bay, with fifty years of continual drilling, is a great example of diminishing benefits of new wells, as the average well drilled today makes less than a million barrels whereas the early wells averaged over 20 million barrels a well. This is a great example of why early wells should not be the expectation of all wells, however, care should be used when using Prudhoe Bay as an analog from a development standpoint, as cum oil per well statistics for the field are dynamic and have been decreasing with time rather than increasing for many years due to continual development and the order of magnitude discrepancy in productivity of early wells to recently drilled wells. With the number of pools across the North Slope in various formations, a company can narrow the range of expected reservoir properties and well productivity by choosing appropriate analogs. To minimize the effects of reservoir size and development scheme, an attempt was made to compare the fields based on the number of development wells, including injectors. Producer:Injector ratio is an important factor that is often overlooked when describing well performance. It is common to say something along the lines of “the average well in this field will make a million barrels.” Often, this is said without the clarification of whether that is for the average producer, or the average of all wells drilled. The implications of this are that a field like developed like Alpine, which has a 1:1 Producer:Injector ratio and is developed in a line drive flood, if the average producer makes a million barrels, then the average total per well is actually 500,000 barrels (actual cum oil per well for Alpine is 2.7 MMBO). Similarly, if the average producer in a field developed like Pt. McIntyre were to make a million barrels, where
the wells are in inverted nine-spot patterns and has an average Producer:Injector ratio of 3:1, then the average production per well is 750,000 barrels (actual cum oil per well for Pt. McIntyre is 5.1 MMBO). With well costs on the North Slope being in the millions of dollars each, this difference impacts the overall project economics. Production statistics are also important in removing biases when analysing fields. For example, the Lisburne development is often considered a failure, as the field peaked at rates less than half of expectations, and drilling was stopped less than halfway through the initial development plan. Despite many of the wells being shut-in for a duration after the nearby prolific fields Pt. McIntyre and Niakuk began producing to their shared facility, it has averaged about 1.9 million barrels per well (mmbo/well). In comparison, the Kuparuk field has averaged 2.17 mmbo/well, and the Milne Point field, has averaged 0.5 mmbo/well in the Schrader Bluff formation, and 1.25 mmbo/well in the Kuparuk formation. Although drilling and other development costs are not addressed in this comparison, Lisburne has favorable recovery per well metrics compared to many other North Slope fields. For this study, the cumulative produced oil per well includes all wells drilled in the field regardless of production life, and is not reflective of the expected ultimate reserves (EUR) per well, but the total produced oil by July 2017. Many of the fields of the North Slope have good reservoir properties; however, none of them have averaged more than 6 mmbo/well, with the vast majority of the fields averaging between 0.5-1.5 mmbo/well. Additional figures on reservoir performance can be found in the Appendix in Figure 304 through Figure 325.

FIGURE 6: CUM OIL/LIFETIME WELLS (MMBO) VS AVERAGE PRODUCER:INJECTOR RATIO
Figure 10 depicts average production per active well in barrels of oil per day for fields that averaged more than 250 bopd/well. The top producing pools, Northstar Kuparuk, Oooguruk Nuiqsut and Nikaitchuq are relatively immature in their field development compared to most of the other fields. Additionally, Raven has is a small pool with few wells and recently drilled a productive side-track.
FIGURE 11: AVERAGE PRODUCTION/ACTIVE WELL (BOPD/WELL) FIELDS WITH ALPINE LIKE FORMATION

FIGURE 12: AVERAGE PRODUCTION/ACTIVE WELL (BOPD/WELL) FIELDS WITH BROOKIAN FORMATION
FIGURE 13: AVERAGE PRODUCTION/ACTIVE WELL (BOPD/WELL) FIELDS WITH IVISHAK/SAG FORMATION

FIGURE 14: AVERAGE PRODUCTION/ACTIVE WELL (BOPD/WELL) FIELDS WITH KUPARUK LIKE FORMATION
Although there is a lot of variation in the fields across the North Slope, a series of trends can be made to predict reservoir performance and deliverability. This study generated a number of charts that can be seen in Figure 16 through Figure 30. Figure 16 depicts the permeability times the net formation height divided by the viscosity, a ratio central to Darcy’s law that can be used to predict the cumulative oil per well a field will deliver. This chart, which is one of the key outcomes of this study, is critical in comparing the productivity of different targets. Though there is some spread in the achievable values based on reservoir rock and fluid properties alone, if it uses field average properties and public data, recovery per well for an exploration target should be benchmarked against this. For example, if a discovery has properties where the net thickness times the permeability divided by the viscosity is around 1,000 md-ft/cp, then the field will likely produce around a million barrels per well, with a downside of 500,000 barrels, and an upside of 2 million barrels. For a field to produce an average of four million barrels per well, it needs reservoir properties around 40,000 md-ft/cp. Improvements in well technology and enhanced oil recovery may help well productivity overall, however, many fields in this plot already employ those technologies. Figure 17 demonstrates the need for considering offline wells when using analog field profiles when creating type curves. The Y axis is the cumulative oil of the active producer average rate profile with time as seen in Figure 8 to Figure 15, while the X axis is the cumulative oil divided by the lifetime wells and adjusted by the Producer:Injector ratio to estimate the total number of producers. This plot demonstrates that if the active producer average rate profile is used as an analog, instead of including poor wells that get shut in early wells with poor on-time, the analog profile will estimate a rate around twice as high as one that considers all wells. This is important, as the bias of engineers tends to take the success cases and assume those are the most likely case of the future development, rather than truly represent a development with a combination of successes and failures. Prudhoe Bay is an outlier in this chart as it has a very active production optimization program with cycle producers and seasonal production capacity fluctuations. Figure 18 through Figure 30 can be used to estimate reservoir properties prior to discovery of a field, or for estimating reservoir properties of announced discoveries of which minimal information may be publicly available. It is important to consider the formation, location, and depth of Northstar and Minke (also known as Endicott Sag-Ivishak) which appear as outliers in some reservoir properties.
FIGURE 16: KH/M VS. CUM OIL/LIFETIME WELLS DRILLED BY FIELD

FIGURE 17: CUM OIL/ACTIVE PRODUCER PROFILE VS. PRODUCER:INJECTOR RATIO ADJUSTED CUM OIL/PRODUCER BY FIELD
FIGURE 18: ORIGINAL GAS OIL RATIO VS. OIL GRAVITY

FIGURE 19: ORIGINAL GAS OIL RATIO VS. ORIGINAL FORMATION VOLUME FACTOR
FIGURE 20: REFERENCE DATUM VS. ORIGINAL GAS OIL RATIO

FIGURE 21: ORIGINAL FORMATION VOLUME FACTOR VS. OIL GRAVITY
FIGURE 22: REFERENCE DATUM VS. ORIGINAL FORMATION VOLUME FACTOR

FIGURE 23: REFERENCE DATUM VS. OIL GRAVITY
FIGURE 24: REFERENCE DATUM VS. POROSITY

FIGURE 25: PERMEABILITY VS. POROSITY
FIGURE 26: REFERENCE DATUM VS. OIL VISCOSITY

FIGURE 27: DEPTH VS. OIL VISCOSITY (PASKVAN, ET AL., 2016)
FIGURE 28: GOR VS. OIL VISCOSITY

FIGURE 29: OIL GRAVITY VS. VISCOSITY
6. NORTH SLOPE UNITS

7. BADAMI

The Badami field is located about 35 miles to the east of Prudhoe Bay. The field produces from a Brookian turbidite sand, was discovered in 1990, and came online in 1998, about 18 months after project sanction. Badami has a dedicated facility capable of producing oil rates of 35,000 bopd, water rates 30,000 bwpd, and handling 28 mmcf of gas injection and 10 mmcf/d of lift gas. The original development plan included 22 producers, 13 WAG injectors, 2 source water wells, and a disposal well. (Repp & Ennis, 1999). As seen in Figure 34, the field peaked above 7,000 bopd with 8 wells online, but fell quickly. Soon after development it became apparent that the field was much more compartmentalized than previously expected, which allowed for high initial rates, but hampered long term productivity. The field is largely considered a development failure, and is a good example about the geologic complexity and the impacts on development. It is unclear in public documentation if additional appraisal before sanction would have predicted the level of compartmentalization. It is documented that the project was fast tracked and reservoir definition activities were done in parallel with facilities engineering (Repp & Ennis, 1999).
FIGURE 31: BADAMI LOCATION MAP (REPP & ENNIS, 1999)

FIGURE 32: BADAMI PROJECT DEVELOPMENT GANTT CHART (REPP & ENNIS, 1999)
8. **Colville River**

The Colville River Unit located about 30 miles west of Kuparuk, is operated by ConocoPhillips and comprises of the Alpine, Nanuq, Qannik, and Fiord fields. These fields all produce to the Alpine facility which is capable of handling 140,000 bopd, 180 mmcfd of gas, and 100,000 bwpd (Kaltenbach, et al., 2004). With the recent drilling at CD5, the unit is producing 60,000 bopd, and the neighboring Greater Mooses Tooth Unit developments GMT1 and GMT2 are planned to produce to the Alpine facility. The Alpine unit is produces from the Jurassic Alpine Nechelik sands (Alpine, Fiord) with its satellite fields producing from Kuparuk (Fiord, Nanuq) and Brookian (Qannik, Nanuq) sands.
8.1. **Alpine**

The Alpine field produces from the Jurassic aged Alpine sands. Field development utilizes a 1:1 Producer:Injector ratio using both fractured and non-fractured horizontal producers and horizontal injectors creating a line drive pattern for the water alternating miscible gas (MWAG) flood. This has proven highly effective, with over 420 million barrels of oil produced to date after 17 years of production, making it the fifth largest producing field on the North Slope in terms of recovery. Recent drilling at CD5 has increased production at Alpine from approximately 20,000 bopd to 50,000 bopd as seen in Figure 40.
FIGURE 39: ALPINE COMPOSIT TYPE LOG (SCHNEIDER, ULRICH, HODGE, BARREE, & MARTIN)

FIGURE 40: ALPINE FIELD PRODUCTION
 FIGURE 41: ALPINE DRILLING PERMITS BY YEAR

 FIGURE 42: ALPINE PRODUCTION AND WELL COUNT
8.2. **Fiord**

The Fiord Field produces from CD3 and comprises a Kuparuk and Nechelik producing area. Production began in 2006 and peaked over 30,000 bopd. It is currently producing approximately 8,500 bopd, having cumulatively produced over 66 million barrels, making it the largest Alpine satellite field. There are 25-30 active wells in the pool.
FIGURE 45: COLLVILLE RIVER UNIT PARTICIPATING AREAS MAP 2017 (CONOCOPHILLIPS, 2017)

FIGURE 46: FIORD FIELD PRODUCTION
8.3. **Nanuq**

The Nanuq field is developed at the CD4 drillsite and produces both in the Nanuq and Kuparuk sandstones. Production began in 2006 and the field is now up to 10 active wells producing a combined 1,500 bopd. It has made 3.7 million barrels to date, about 20% of the original expected low side of recoverable oil.

TABLE 2: Nanuq Oil In Place And Recoverable Volumes (AOGCC, 2005)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil in place, MMSTB</td>
<td>84</td>
<td>169</td>
</tr>
<tr>
<td>Recoverable Oil, MMSTB</td>
<td>22</td>
<td>69</td>
</tr>
<tr>
<td>Gas in place, BSCF</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 47: FIORD PRODUCTION AND WELL COUNT

FIGURE 48: NANUQ FIELD PRODUCTION
8.4. **QANNIK**

The Qannik field produces from CD2 from the Qannik formation. Production began in 2008 and peaked at 3,000 bopd. Currently the field produces 1,700 bopd with 9 active wells and has produced 6 million barrels of oil, about a third of the originally expected 17 million barrels development.
TABLE 3: QANNIK WELL DATA (ALVORD, ET AL., 2009)

<table>
<thead>
<tr>
<th>Well Name</th>
<th>CD2-404</th>
<th>CD2-464</th>
<th>CD2-463</th>
<th>CD2-467</th>
<th>CD2-470</th>
<th>CD2-466</th>
<th>CD2-465</th>
<th>CD2-469</th>
<th>CD2-468</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planned Mud Weight</td>
<td>9.9</td>
<td>9.9</td>
<td>9.5</td>
<td>9.5</td>
<td>9.5</td>
<td>9.5</td>
<td>9.6</td>
<td>9.6</td>
<td>9.6</td>
</tr>
<tr>
<td>Total Depth</td>
<td>11540</td>
<td>10776</td>
<td>10886</td>
<td>13836</td>
<td>15233</td>
<td>18286</td>
<td>13733</td>
<td>14297</td>
<td>17850</td>
</tr>
<tr>
<td>Total Length</td>
<td>5969</td>
<td>5714</td>
<td>5727</td>
<td>8427</td>
<td>7284</td>
<td>7284</td>
<td>7128</td>
<td>7128</td>
<td>7128</td>
</tr>
<tr>
<td>Planned TD</td>
<td>11533</td>
<td>13742</td>
<td>10904</td>
<td>14048</td>
<td>16716</td>
<td>18459</td>
<td>17212</td>
<td>14854</td>
<td>18014</td>
</tr>
<tr>
<td>Modeled ECD at TD</td>
<td>12.0</td>
<td>11.0</td>
<td>10.8</td>
<td>11.0</td>
<td>11.1</td>
<td>11.2</td>
<td>11.2</td>
<td>11.2</td>
<td>11.2</td>
</tr>
<tr>
<td>Modeled Pump Rate at TD</td>
<td>280</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>Actual ECD at TD</td>
<td>12.15</td>
<td>11.01</td>
<td>10.83</td>
<td>10.64</td>
<td>11.05</td>
<td>11.45</td>
<td>11.01</td>
<td>10.97</td>
<td>11.3</td>
</tr>
<tr>
<td>Actual Pump Rate at TD</td>
<td>280</td>
<td>267</td>
<td>267</td>
<td>275</td>
<td>285</td>
<td>290</td>
<td>300</td>
<td>275</td>
<td>272</td>
</tr>
<tr>
<td>Max Mud Weight</td>
<td>10</td>
<td>10.5</td>
<td>9.65</td>
<td>9.6</td>
<td>9.55</td>
<td>9.6</td>
<td>9.65</td>
<td>9.6</td>
<td>9.65</td>
</tr>
<tr>
<td>Max YP</td>
<td>15</td>
<td>11</td>
<td>6</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Max 3/6 RPM</td>
<td>7/8</td>
<td>4/4</td>
<td>2/3</td>
<td>3/4</td>
<td>3/6</td>
<td>6/3</td>
<td>2/3</td>
<td>2/3</td>
<td>2/3</td>
</tr>
<tr>
<td>Total Losses</td>
<td>997</td>
<td>1019</td>
<td>114</td>
<td>513</td>
<td>508</td>
<td>760</td>
<td>65</td>
<td>1316</td>
<td>349</td>
</tr>
<tr>
<td>Departure</td>
<td>9224</td>
<td>8159</td>
<td>8378</td>
<td>11430</td>
<td>13479</td>
<td>16772</td>
<td>12060</td>
<td>12458</td>
<td>16297</td>
</tr>
<tr>
<td>Departure/TVD Ratio</td>
<td>2.30</td>
<td>2.00</td>
<td>2.05</td>
<td>2.79</td>
<td>3.24</td>
<td>4.16</td>
<td>2.95</td>
<td>3.07</td>
<td>4.00</td>
</tr>
<tr>
<td>% Lateral in zone</td>
<td>64</td>
<td>90</td>
<td>86</td>
<td>80</td>
<td>70</td>
<td>99</td>
<td>96</td>
<td>84</td>
<td>96</td>
</tr>
<tr>
<td>% Net/Gross sand</td>
<td>84</td>
<td>30</td>
<td>72</td>
<td>59</td>
<td>68</td>
<td>52</td>
<td>80</td>
<td>58</td>
<td>60</td>
</tr>
</tbody>
</table>

FIGURE 51: QANNIK TYPE LOG (AOGCC, 2008)
TABLE 4: QANNIK OIL IN PLACE AND RECOVERABLE VOLUMES (AOGCC, 2008)

<table>
<thead>
<tr>
<th>Hydrocarbon Volume</th>
<th>Nine-Well Development (MMSTB)</th>
<th>Eighteen-Well Development (MMSTB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original Oil in Place (OOIP)</td>
<td>79</td>
<td>127</td>
</tr>
<tr>
<td>Primary Recovery with Gas Cap Expansion (Primary) (15% of OOIP)</td>
<td>12</td>
<td>19</td>
</tr>
<tr>
<td>Primary + Waterflood (a total of 22% of OOIP)</td>
<td>17</td>
<td>28</td>
</tr>
</tbody>
</table>

![FIGURE 52: QANNIK FIELD PRODUCTION](image)

![FIGURE 53: QANNIK PRODUCTION & ACTIVE WELLS](image)

9. **Duck Island**
Hilcorp is the current operator of the Duck Island unit which consists of the Endicott, Eider, Sag Delta North, and Minke fields, and are produced from the islands Main Production Island (MPI) and Satellite Drilling Island (SDI), west of Greater Prudhoe Bay.

FIGURE 54: DUCK ISLAND UNIT PRODUCTION

9.1. **EIDER**

The Eider field produces from the Ivishak formation and consists of two wells that have produced 2.8 million barrels. Although in 2013 the producer was turned back online, the vast majority of the oil was produced from 1998-2006. Current production average less than 20 barrels of oil per day.
9.2. **ENDICOTT**

The Endicott field produces from the Kekiktuk formation and was the first arctic offshore producing oil field, producing from two man-made gravel islands in 14 feet of water (Adamson, Hellman, & Metzger, 1991). Production began in 1998 and peaked around 115,000 bopd. The field has produced just shy of 500 million barrels to date and averages 6,000-7,000 bopd with 70 active wells. It has an initial gas cap and is developed as a waterflood with gas reinjection.
<table>
<thead>
<tr>
<th>ENDICOTT GROUP</th>
<th>KIJKIKTUK FORMATION</th>
<th>MIDDLE ELLESMERIAN</th>
<th>PRE-MISS.</th>
<th>FRANKLINIAN</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>3C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 57: ENDICOTT TYPE SECTION (ADAMSON, HELLMAN, & METZGER, 1991)

FIGURE 58: ENDICOTT FIELD PRODUCTION
9.3. **Sag Delta North**

Sag Delta North is an Ivishak field that began production in 1989. Production briefly peaked over 12,000 bopd with five wells online; however, the field has been a flat production level between 200-500 bopd since 1996. There are three active wells and the field is currently producing around 300 bopd.
9.4. **MINKE**

Minke is a single well (2-30B on MPI) development in the Sag River formation. Production peaked at 1,200 bopd and current production rates are around 400 barrels per day. The well came online in 2009 and has made 1.4 million barrels to date.
10. **Kuparuk River**

The Kuparuk River Unit lies to the west of Prudhoe Bay and is comprised of the Kuparuk, West Sak, Meltwater, Tarn, and Tabasco fields. It is operated by ConocoPhillips, and is the second most productive unit on the North Slope.
10.1. **KUPARUK**

The Kuparuk River field was discovered in 1969 in the Ugnu No. 1 well, and production began in December 1981, four and a half years after Prudhoe Bay began production (Jensen, et al., 2012). The field is developed as a large scale waterflood and has incorporated both with miscible-water-alternating-gas (MWAG) and immiscible-water-alternating-gas (IWAG) projects to enhance oil recovery. The field produces from the Kuparuk formation, including the A and C sands, and is highly faulted. The original anticipated rates for the field were 250,000 bopd (Jensen, et al., 2012). The field peaked at over 325,000 bopd, and sustained production above 250,000 bopd until 1998. The field has made 2.4 billion barrels of oil to day and currently produces around 80,000 bopd from approximately 800 active wells, with over 1,100 wells having been drilled into the field.
FIGURE 66: KUPARUK FAULT MAP (JENSEN, ET AL., 2012)

FIGURE 67: KUPARUK FIELD PRODUCTION
FIGURE 68: KUPARUK FLUID PRODUCTION AND WATER INJECTION RATE

FIGURE 69: KUPARUK GAS PRODUCTION AND INJECTION RATE
FIGURE 70: KUPARUK GAS OIL RATIO VS. CUM OIL

FIGURE 71: KUPARUK WATERCUT VS. CUM OIL
FIGURE 74: KUPARUK PRODUCTION AND ACTIVE WELLS

FIGURE 75: KUPARUK AVERAGE ACTIVE WELL PRODUCTION
10.2. **Meltwater**

The Meltwater field was discovered in early 2000 with the Meltwater North 1 well, and came on production in November 2001 (AOGCC, 2017). It produces from the Bermuda interval of the Seabee formation, and no gas cap or oil water contacts have been encountered in the pool (AOGCC, 2017). Production peaked in this field over 10,000 bopd and it currently produces around 1,000 bopd from 14 active wells.
10.3. **Tabasco**

The Tabasco field was discovered in 1986 and produces from the Tabasco sandstone, a Schrader Bluff equivalent (AOGCC, 2017). Field production began in 1998 and peaked at around 7,000 bopd. The field 19 million barrels of oil to day and is currently producing around 1,000 bopd from 7 active wells.
10.4. **TARN**

The Tarn field was discovered in 1991 with the Bermuda No 1 well, and produces from the Seabee formation (AOGCC, 2017). Production began in 1998 and peaked over 35,000 bopd. The field has produced 118 million barrels of oil, and is currently producing approximately 8,000 bopd from 60 active wells.
10.5. **West Sak**

The West Sak Field is a multi-billion barrel of oil in place viscous oil reservoir that produces from the West Sak sands, also referred to as Schrader Bluff. In 1983, a West Sak pilot waterflood operated for two and a half years. Although it was a technical success, it was considered a business failure at the time due to the low production rates (Foerster, Lynch, Stramp, Werner, & Thompson, 1997). Production from the field began again in 1997, with early development consisted vertical wells and averaged of 150-250 bopd per producer. Using horizontal drilling and multi-lateral wells, peak rates of over 5,000 bopd and sustained rates of 1,500 were achieved (Targac, Redman, Davis, McKeever, & Chambers, 2005). The field has produced 84 million barrels of oil and currently produces approximately 14,000 bopd from 80-90 active wells.
11. **Milne Point**

The Milne Point unit is located to the northwest of Prudhoe Bay along the coast and is operated by Hilcorp. It consists of four pools, identified by their producing formation, the Kuparuk, Schrader Bluff, Sag River, and Ugnu.
11.1. **Milne Kuparuk**

The Milne Kuparuk was discovered in 1969 with the Kavearak Pt. No 32-25 well. Production began in 1985, but with low oil prices the field was shut down in 1987 before resuming in 1990 (AOGCC, 2017). Production increased dramatically in 1996 after an aggressive drilling program, more than doubling the previous average rate and peaking near 50,000 bopd. The field has produced 255 million barrels of oil and is currently producing 11,000 bopd from 120-140 wells. Wells in the Milne Kuparuk utilize electric submersible pumps (ESPs) for artificial lift, and ESP replacements create fluctuations on the number of wells online and field rate.
FIGURE 87: MILNE KUPARUK FIELD PRODUCTION

FIGURE 88: MILNE KUPARUK PRODUCTION AND ACTIVE WELLS
11.2. **MILNE SAG RIVER**

The Milne Sag River began production in 1995 producing from the deeper and tighter Sag River formation. Production briefly peaked at 2,000 bopd, and the field has made nearly 3 million barrels to date. Recent activity in this pool has increased production to around 1,000 barrels per day from 5 wells.
11.3. **MILNE SCHRADER BLUFF**

The Milne Schrader Bluff field began production in 1991 and ramped up to over 20,000 bopd in 2004. The field has produced 77 million barrels and recent activity has increased active well count and production from a low of 40 wells producing 4,000 bopd to 80 wells producing over 9,000 bopd.
11.4. **MILNE UGNU**

The Milne Ugnu pool produces from a dedicated facility located at Milne Point that was designed to handle the heavy viscous crude and separate the associate produced sand. The program was designed to produce the cold heavy oil with sand (CHOPS), and utilized progressive cavity pumps in the wells for artificial lift. The sand production and well deviation created wear in the wells and reduced reliability. Production occurred from 2011-2013, peaking at less than 500 with two wells online.
FIGURE 95: NORTH SLOPE HEAVY OIL RESOURCE MAP (YOUNG, MATHEWS, & HULM, 2010)

FIGURE 96: MILNE UGNU TYPE LOG (YOUNG, MATHEWS, & HULM, 2010)

FIGURE 97: MILNE UGNU FIELD PRODUCTION
12. **NIKAITCHUQ**

The Nikaitchuq field is located in about 10 feet of water in the Beaufort Sea to the north of the Kuparuk Field and west of Milne Point. The field has a dedicated processing facility and produces from the offshore drill site at Spy Island (SID), and an onshore drill site at Oliktok Point (OPP) (Kuck, Nofziger, Gentil, & Faevelen, 2014). Kerr-McGee discovered the field in 2004 with the drilling Nikaitchuq No. 1, and ENI acquired 100% ownership in 2007 (Abahusayn, Foster, Brink, Kuck, & Longo, 2012). It comprises of 11 state leases and about 21,000 acres (ENI US Operating Co. Inc., 2017). Nikaitchuq has a royalty average of 15.73%, however successfully was able to petition for modification to 5% to improve the economics of the project after a previous request had been denied (Nelson, 2007). In 2008 ENI sanctioned the development with an expected spend of $1.45 billion, with plans at the time to drill 73 wells (Lidji E., Eni brings North Slope oil field online three years after sanctioning, 2011).
Nikaitchuq produces from the Schrader Bluff reservoir, a formation that is produced in other units at Milne Point, Prudhoe Bay's Orion and Polaris fields, and Kuparuk's West Sak field. It is a low API reservoir, being only 16-18°, and is viscous at 143 cp. It has a gross thickness of 35-50 ft. with a net to gross of 65-93%. It has high porosity is 25-35% (average 29%), and permeabilities of 90-600mD (average 300), Initial water saturation of 26-43% (average 26.5%). It produces from relatively shallow sands 3,000-4,000 feet deep with a reference datum of 3,760 feet. Reservoir temperature is also cool, at 80°F. (AOGCC, 2017) (Abahusayn, Foster, Brink, Kuck, & Longo, 2012).
12.1. **FIELD DEVELOPMENT**

To date 51 wells have been permitted in Nikaitchuq, and there are 50 active wells (29 producers, 21 injectors). ENI had plans to drill an ultra-extended reach exploration well from SID in block 6423 in December 2017, and three new wells in 2018, as well as adding new laterals to existing wells. Most wells at Nikaitchuq are considered extended reach wells, and typically comprise of long horizontal wells. To date a million feet of has been drilled (Chaudhry, Sallee, & Burton, 2016). 93% of the wells have a Reach to TVD ratio (ERD Ratio) greater than 4:1, with several of the wells having an ERD ratio greater than 5:1 (Abahusayn, Foster, Brink, Kuck, & Longo, 2012).

TABLE 5: NIKAITCHUQ FIELD WELL COUNT (ENI US OPERATING CO. INC., 2017)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OPP</td>
<td>SID</td>
<td>Total</td>
<td>OPP</td>
</tr>
<tr>
<td>Injector</td>
<td>8/8</td>
<td>11/12</td>
<td>20</td>
<td>0/1</td>
</tr>
<tr>
<td>Producer</td>
<td>11/11</td>
<td>15/15</td>
<td>26</td>
<td>1/2</td>
</tr>
<tr>
<td>Disposal</td>
<td>1/1</td>
<td>1/1</td>
<td>2</td>
<td>1/1</td>
</tr>
<tr>
<td>Water Source</td>
<td>3/3</td>
<td>0</td>
<td>3</td>
<td>3/3</td>
</tr>
<tr>
<td>Total</td>
<td>23/23</td>
<td>27/28</td>
<td>51</td>
<td>4/4</td>
</tr>
</tbody>
</table>
FIGURE 101: NIKAITCHUQ DRILLING PERMITS BY YEAR

FIGURE 102: PLAN VIEW OF NIKAITCHUQ DEVELOPMENT (ABAHUSAYN, FOSTER, BRINK, KUCK, & LONGO, 2012)
FIGURE 103: PROPOSED NIKAITCHUQ UNIT DEVELOPMENT ACTIVITY MAY 2017 (ENI US OPERATING CO. INC., 2017)

FIGURE 104: TYPICAL NIKAITCHUQ ERD WELL PATH (CHAUDHRY, SALLEE, & BURTON, 2016)
Nikaitchuq has a dedicated processing plant that can handle up to 40,000 bopd of oil and 120,000 bwpd (Lidji E., Eni brings North Slope oil field online three years after sanctioning, 2011). Production came online in January 2011 exceeded reached plateau rate of approximately 25,000 bopd in September 2014, peaking at 25,940 bopd in November 2015. Average production rates for the first half of 2017 is approximately 21,000 bopd. The field has recovered 40 MMBO to date and has a producing watercut of 53%, and producing GOR of 140 scf/bbl.
FIGURE 108: NIKAITCHUQ WATER OIL RATIO VS CUM OIL

FIGURE 109: NIKAITCHUQ GAS OIL RATIO VS. CUM OIL
It is premature to give long-term forecast to Nikaitchuq since there is not a long history of decline. Also, declines after plateau are typically steeper than the long term hyperbolic decline that follows water breakthrough. Recent decline may also be affected by operational considerations. If recent decline is used to forecast future field performance, then Nikaitchuq will recover less than half of the expected 220 MMBO recoverable volume predicted in 2011 (Lidji E., Eni brings North Slope oil field online three years after sanctioning, 2011). The 90-100 MMBO recoverable forecast is close to the bottom of the range of the original recovery estimate of 120-200 MMBO stated in the pool rules, and additional development, development in the N sand, or improvement in decline may push it into this range (AOGCC, 2011).

TABLE 6: NIKAITCHUQ HYDROCARBON RECOVERY (AOGCC, 2011)

<table>
<thead>
<tr>
<th>Hydrocarbon Recovery</th>
<th>(MMSTB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original Oil-in-Place (OOIP) – OA Sand</td>
<td>800 - 930</td>
</tr>
<tr>
<td>Primary Recovery (4 – 5 % OOIP)</td>
<td>30 - 45</td>
</tr>
<tr>
<td>Primary + Water flood (a total of 15% to 22% of OOIP)</td>
<td>120 - 200</td>
</tr>
</tbody>
</table>

13. NORTHSTAR

The Northstar unit is operated by Hilcorp and consists of two pools, the Northstar field which produces from the Ivishak, and the more recently developed shallower pool Northstar Kuparuk.
13.1. **Northstar**

The Northstar field is produced from a man-made gravel island in 37 feet of water in the Beaufort Sea. It is 6 miles offshore, and is the first offshore field in the arctic to use a subsea pipeline (Lanan, Ennis, Egger, & Yockey, 2001). It was discovered in 1983 by Shell, and developed by BP with first oil occurring in 2001. Production peaked around 75,000 bopd and the field has produced 167 million barrels of oil. The field is currently producing 4,000 bopd from 22 active wells.

![Figure 113: Northstar Field Production](image1)

![Figure 114: Northstar Production and Active Wells](image2)
13.2. **Northstar Kuparuk**

The Northstar Kuparuk pool began in 2010, nine years after field development. It consists of two active wells which combined have produced 3.1 million barrels of oil and are currently producing 2,500 bopd.
14. **OOGURUK**

The Ooguruk Unit comprises of three fields: the Ooguruk Nuiqsut, the Ooguruk Kuparuk, and the Ooguruk Torok. Caelus operates the field and holds a 70% working interest, while ENI holds 30%. There are 43 wells in the unit, 28 in the Nuiqsut field, five in the Kuparuk, and four in the Torok. There is also a disposal well and five other exploration and appraisal wells outside the existing participating areas (Caelus Natrual Resources Alaska, LLC, 2017). The field produces to facilities in the Kuparuk River Unit, and have an estimated 6% back-out associated with its production (Department of Natural Resources, 2015).
14.1. **OOGURUK KUPARUK**

The Oooguruk Kuparuk was the first developed pool of the Oooguruk development and began production in 2008, and peaked at 10,000 bopd. The field has produced 8.5 million barrels of oil, which is the high side of the original development expectations for the pool. The field currently produces 300 bopd from three wells.

TABLE 7: OOGURUK KUPARUK OIL IN PLACE AND EXPECTED RECOVERY (AOGCC, 2012)

<table>
<thead>
<tr>
<th>Hydrocarbon Volume</th>
<th>Low Estimate (MMSTB)</th>
<th>High Estimate (MMSTB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original Oil in Place (OOIP)</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>Primary Recovery (6% to 10% of OOIP)</td>
<td>1</td>
<td>2.5</td>
</tr>
<tr>
<td>Primary + Waterflood (26 to 34% of OOIP)</td>
<td>4</td>
<td>8.5</td>
</tr>
</tbody>
</table>
FIGURE 124: OOOGURUK KUPARUK & NUJQSUT TYPE LOG (AOGCC, 2012)
FIGURE 125: OOOGURUK KUPARUK MAP (CAELUS NATRUAL RESOURCES ALASKA, LLC, 2017)

FIGURE 126: OOOGURUK KUPARUK DRILLING PERMITS BY YEAR
FIGURE 127: OOOGURUK KUPARUK PRESSURE

FIGURE 128: OOOGURUK KUPARUK PRODUCTION
FIGURE 129: OOOGURUK KUPARUK GAS OIL RATIO VS CUM OIL

FIGURE 130: OOOGURUK KUPARUK WATERCUT VS. CUM OIL
14.2. **Oooguruk Nuiqsut**

The Oooguruk Nuiqsut pool began production in 2008 and produced at rates over 17,000 barrels of oil per day and is continuing to ramp up production. It has produced 19 million barrels of oil and averaged four new wells a year from 2012-2015 and is producing from 25 active wells.
TABLE 8: OOOGURUK NUIQSUT OIL IN PLACE AND EXPECTED RECOVERY (AOGCC, 2008)

<table>
<thead>
<tr>
<th>Hydrocarbon Volume</th>
<th>Low Estimate (MMSTB)</th>
<th>High Estimate (MMSTB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original Oil in Place (OOIP)</td>
<td>250</td>
<td>300</td>
</tr>
<tr>
<td>Primary Recovery (4% to 10% of OOIP)</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>Primary + Waterflood (16% to 30% of OOIP)</td>
<td>40</td>
<td>90</td>
</tr>
<tr>
<td>Primary + Waterflood + US-WAG (18% to 34% of OOIP)</td>
<td>45</td>
<td>102</td>
</tr>
</tbody>
</table>

FIGURE 133: OOOGURUK NUIQSUT MAP (CAELUS NATURAL RESOURCES ALASKA, LLC, 2017)
FIGURE 134: OOOGURUK NUIGSUT MAP WITH PLANNED WELLS (CAELUS NATRUAL RESOURCES ALASKA, LLC, 2017)

FIGURE 135: OOOGURUK NUIGSUT DRILLING PERMITS BY YEAR
FIGURE 136: OOGURUK NUIQSUT PRESSURES

FIGURE 137: OOGURUK NUIQSUT PRODUCTION
FIGURE 138: OOOGURUK NUIQSUT FLUID PRODUCTION AND WATER INJECTION RATE

FIGURE 139: OOOGURUK NUIQSUT GAS PRODUCTION AND INJECTION
14.3. **OOGURUK TOROK**

The Oooguruk Torok field began production in 2010 and has produced 0.8 million barrels. There are four wells in the development, two of which are currently active, producing about 200 bopd.

TABLE 9: OOGURUK TOROK OIL IN PLACE AND EXPECTED RECOVERY (AOGCC, 2012)

<table>
<thead>
<tr>
<th>Development Phase</th>
<th>OOIP</th>
<th>Primary Recovery (5% of OOIP)</th>
<th>Incremental IWAG Recovery (Low/Median/High – 5%/15%/25% of OOIP)</th>
<th>Combined Recovery (Low/Median/High – 10%/20%/30% of OOIP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODS</td>
<td>50</td>
<td>2.5</td>
<td>2.5/7.5/12.5</td>
<td>5/10/15</td>
</tr>
<tr>
<td>Onshore Core Area</td>
<td>290</td>
<td>14.5</td>
<td>14.5/43.5/72.5</td>
<td>29/58/87</td>
</tr>
<tr>
<td>Onshore Expansion Area</td>
<td>350</td>
<td>17.5</td>
<td>17.5/52.5/87.5</td>
<td>35/70/105</td>
</tr>
<tr>
<td>OTOP Total</td>
<td>690</td>
<td>34.5</td>
<td>34.5/103.5/172.5</td>
<td>69/138/207</td>
</tr>
</tbody>
</table>
FIGURE 141: OOOGURUK TOROK MAP (CAELUS NATURAL RESOURCES ALASKA, LLC, 2017)

FIGURE 142: OOOGURUK TOROK TYPE LOG (AOGCC, 2012)
15. **Prudhoe Bay Unit**

The Greater Prudhoe Bay Unit is the anchor field for all other fields on the North Slope. It can be divided into a set of three field groupings. The primary of which is giant oil field Prudhoe Bay, sometimes referred to as the initial participating area (IPA). Secondly there is the Greater Point McIntyre Area (GPMA), which comprises of the fields to the north of Prudhoe Bay: Lisburne, Pt. McIntyre, Niakuk, Raven, West Beach, and North Prudhoe Bay. Thirdly, the western satellites: Aurora, Borealis, Orion, Polaris, and Midnight Sun.
15.1. **AURORA**

The Aurora field produces from the Kuparuk formation and is located at S pad. Production from the field began in 2000, and the field peaked at 14,000 bopd. The field has made 42 million barrels of oil and is currently producing 5,000 bopd from 30 active wells. The field is developed as a waterflood with MWAG.
FIGURE 150: AURORA WELL MAP (BP EXPLORATION (ALASKA) INC., 2016)

FIGURE 151: AURORA FIELD PRODUCTION
15.2. BOREALIS

The Borealis field produces from the Kuparuk formation and is located at L, V, and Z pads. Production from the field began in 2001, and the field peaked at 35,000 bopd. The field has made 81 million barrels of oil and is currently producing 8,000 bopd from approximately 50 active wells. The field is developed as a waterflood with MWAG.
15.3. LISBURN

The Lisburne Pool was discovered by Arco in 1969 with the drilling of Prudhoe Bay State 1. As this well also discovered the world class Prudhoe Bay, development of Lisburne was put on hold until after Prudhoe Bay was more fully developed. With higher oil prices in the 1980s, and the anticipation of Prudhoe Bay going on decline, interest was renewed. The Lisburne Project was sanctioned in 1984, based on 2D seismic and 12 wells, and development drilling began in 1985. Lisburne Production Center (LPC) came online on December 15th, 1986, being the first fully integrated production facility to be brought up on a single sealift (Paige & Dayton, 1987). The Original Oil in Place (OOIP) volumetric estimates range from 2-3 billion barrels, while early material balance work indicates a contributing OOIP of 1.5-2 BBO.
15.3.1. Geology

The wells in the Lisburne Pool produce predominantly out of the Wahoo formation, with the exception of NK-25 and NK-26, which lie in a section of the Alapah in the northeastern corner of the pool. As seen in Figure 157, the Wahoo underlies the Kavik Shale and is divided into 7 zones, separated by thin shales. The green shale separates the Wahoo from the Alapah, which is divided 5 zones, and predominantly overlies the Kayak Shale. The Wahoo is predominantly limestone with large packages of dolomite and minor amounts of cherts. Shale intervals within the Wahoo vary in thickness and may be 1-30 feet thick. The dominant rock types are packstones and grainstones, and may be composed of various mixtures of skeletal and non-skeletal lime particles (Paige & Dayton, 1987). All porosity in the Lisburne is secondary porosity, relating to diagenetic effects, either dissolution or dolomitization. The Lisburne field is defined by the Niakuk fault to the north, the Lower Cretaceous Unconformity (LCU) to the east, and a gentle dip to the south and west. The LCU and the Pre Echooka Unconformity (PEU), eroded part of reservoir, and both greatly influenced the diagenetic effects along the top of the formation. This highly porous and permeable zone has historically been referred to as the Sub Alteration Zone (SAZ). Additionally, Lisburne is considered a type 2 fractured carbonate, with essential permeability being supplied by the fractures. The nature of the fractures and complexity geology were greatly underestimated during initial field development. By 1991, at the end of the initial field development, the geologic models pay, fluid contacts, lithology, and fractures had changed greatly compared to the 1984 depiction of Lisburne.
The original 5% porosity cutoff for net pay was based on using the carbonates of the Permian Basin as an analogy. This was later found to be much too low of porosity, with 8-12% being a more acceptable number. A
change in porosity cutoff from 5-10% in the Lisburne drops the effective oil in place by approximately 30% as seen in Figure 162 (Missman R, 1991). The large transition zone in Lisburne lead to a variation in oil water contacts as seen in Figure 161. This is in part due to the extremely tight rock affecting capillary pressures and inconclusive drill stem tests, and difficulty picking oil water contacts from open-hole logs. Current models for the Lisburne reflect a tilting OWC, with the contact being at 9150' in the south, and around 8900' in the northern part of the field. Early fracture view of the Lisburne was that all layers were considered to be uniformly enhanced by small scale fracture systems, with relatively few megafractures (Missman R, 1991). Current Fracture view is a combination of megafractures with the small-scale fractures, and a highly permeable zone along the unconformity. Interception of productive fractures is considered necessary to have a productive well in Lisburne.

Early fracture model

Present fracture model

FIGURE 161: LISBURNE FLUID CONTACTS (MISSMAN R, 1991)

FIGURE 162: POROSITY CUTOFF VS PAY VOLUME (MISSMAN R, 1991)
15.3.2. Original Development

The original Lisburne development from 1984 called for over 200 wells on 160 acre spacing, with ultimate development to be infilled at 80 acres with a waterflood. Two-month flow tests were done on four delineation wells to predict reservoir performance. History would show that these delineation wells were coincidently among the best wells ever drilled in Lisburne, and are not representative of the average well. Figure 163 depicts the original development plan, including 6 producing drillsites and a gas injection drillsite. DS-L6 was to be drilled off of Gull Island, but was never commissioned. Wells were drilled at 60 foot centers on drillsites that were designed contain 32-36 wells and to gather 20 mbopd with a 6,000 scf/bbl GOR (Paige & Dayton, 1987). Drilling in Lisburne stopped in 1991 at approximately 320 acre spacing with the discovery of the nearby Pt. McIntyre and Niakuk fields which would later share the facility with Lisburne. By 1988, two years into development, Lisburne field average GOR was already above 6,000 scf/bbl. The Lisburne Production Center was designed to nominally process 100 mbopd, 600 mmscfd (400 mmscfd initially installed) and 10 mbwpd, with produced gas to be reinjected at LGI and produced water to be injected into a nearby cretaceous disposal well (Paige & Dayton, 1987). The plant was also designed to generate 36 megawatts of electricity and contains an NGL plant to blend with the sales crude, which was started up in June 1987 (Paige & Dayton, 1987). Lisburne monthly production never achieved the expected plateau rates of 100 mbopd, but rather peaked between 40-50 mbopd, and averaged about 5000 bopd since 2010 until the recent drilling campaign. Production forecasts in 1987, even with below expected initial results and 48 well drilled, approximately half of what would actually be drilled in the initial development, still predicted continuation of the 200 well drilling program and a peak production of 75 mbopd, with a cumulative production on primary to be approximately 250-350 mmbo by 2010. Today the Lisburne field has produced 187 million barrels, a little more than half what it was expected to deliver. The average expected recovery for a Lisburne well was 1.6 mmbo, with a profile seen in Figure 165, which is approximately the delivery of the average Lisburne well to date with 25-30 years of production history. Actual average 10 year cum oil was a little shy of 1.4 mmbo. As a whole, Lisburne wells performed poorer than expected, with initial rates predicted on average 75-100% above delivered. Lisburne flow performance is heavily dictated by the matrix and fracture connectivity to the well. Most wells experience a sharp decline as the fractures are depleted, followed by a relatively flat production profile as the matrix begins to contribute to the fracture network. As seen in Figure 166, the average well came on around 1500 bopd, and stabilized around 300 bopd.
FIGURE 163: INITIAL LISBURN DEVELOPMENT PLAN WITH WELLS DRILLED BY 1987 HIGHLIGHTED (PAIGE & DAYTON, 1987)

FIGURE 164: LISBURN PRODUCTION FORECAST 1987 (PAIGE & DAYTON, 1987)
FIGURE 165: SINGLE WELL PRODUCTION FORECAST (PAIGE & DAYTON, 1987)

FIGURE 166: LISBURN AVERAGE SINGLE WELL PRODUCTION HISTORY
15.3.3. 1980’s WATERFLOOD PILOT

Waterflood pilot testing began in 1987 on the L2 drillsite, five months after the field started production, with the hopes of doubling ultimate recovery like other carbonate waterfloods. Water broke through in the first test in as little as 8 days (Missman R, 1991). Other patterns and pilots were tested nearby with mixed, mostly negative results. A total of nearly 9 million barrels of water were injected across nine wells. The pilot was plagued with small oil benefits and quick water breakthroughs. The pilot ended and most wells quickly healed from the water injection, including those which had been injectors.
15.3.4. Alapah

With the results of the Sag Delta 1 drill stem test, two wells were drilled off of the Niauk Drill site to exploit the Alapah there. These wells (NK-25 and NK-26) were drilled in 1994 and 1997 with great initial results. To follow up on this, a well, L1-31 was drilled in 1998 to produce the Alapah in the west. This well produced mostly water and was recompleted across the Wahoo (AOGCC, Well Image Files, 2015) (AOGCC, Production Database, 2015).

15.3.5. Lisburne Coil Sidetrack Campaign

From 2003-2006 a coil sidetrack program was developed and executed. Six were wells drilled in 2003 and 2004 were on average approximately 1500 feet in length. The results have been mixed by area and program. Western Periphery wells L1-15A and K-317B have produced 2.2 mmbo and 1.7 mmbo respectively. L5-17A which replaced a very productive parent well has made 1.7 mmbo. The wells drilled off of L2 however, have only made 0.01 mmbo (L2-14A) 0.30 mmbo (L2-14B) and 0.27 (L2-21A) mmbo. In 2006 two underbalanced multilateral coil wells were drilled. These wells were able to double the rate of penetration (ROP) of the previous coil wells, but were 40% over budget. As it was underbalanced drilling, they were able to produce 14,000 barrels of oil while drilling (Johnson, et al., 2007). These wells have done better than the L2 coil wells, but have not produced as much as the L1-15A, K-317B or L5-17A even though they are large multilateral underbalanced wells. L5-16A has made 0.62 mmbo and L5-28A has made 0.56 mmbo.
On July 14th, 2008, the Lisburne Gas Cap Water Injection Pilot commenced in L5-29 with the purpose to provide more reservoir pressure support and has injected 21 MMBW. Water breakthrough has since reached offset wells L5-28, L5-32, L5-33, and L5-36. A peripheral water injector was drilled in May 2012 and has injected 2.6 MMBW, with no wells reporting waterflood breakthrough. Pattern pilot wells L5-15 and L5-13 were converted from producers to injectors in March 2013, with no offset seawater breakthrough being detected in L5-16A. These were converted to try to capture the learnings of the L2 pilot, by injecting at lower rates in a more favorable section of the reservoir. NK-25, an Alapah well, was also converted in March 2013, creating a producer-injector pair in the Alapah, with confirmed seawater breakthrough in the offset Alapah well, NK-26. Although there have been some recent water breakthroughs, it is considered a great improvement on the L2 waterflood pilot which had rapid water breakthrough. Benefits of the L5 waterflood pilot have been an increase in pressure and decreases in GOR which has led to improved producer ontimes and less facility backout.

In 2015, three wells L1-23, L3-10 and L3-10 were drilled and completed. These utilized a rotary rig drilling long (up to “3000’) wells in a “U” shape, cross cutting the upper Wahoo zones. These utilized swell packers and sliding sleeves for stimulation and potentially fluid isolation. Fluid isolation was recognized early on in the Lisburne Development, with many of the wells isolated the top zone from the lower zone utilizing a ported nipple and isolation packers. A combination of acid stimulation and hydraulically fracturing was used on L3-03 and L3-10, with the stimulation type being determined by lithology and fault/fracture description. L1-23 was only acid stimulated. This well design takes advantage of the more productive upper zone along the unconformity, while also stimulating historically less productive lower zones (Michie, Sik, Sauve, & Wages, 2016). In 2016 this campaign was extended and L1-13 and L5-12A were drilled, with L3-25 being drilled in 2017. Initial production results from this campaign are comparable to the original development wells 30 years earlier. This drilling campaign, in combination with wellwork and facility projects in GPMA tripled production at Lisburne and reset decline by 20 years as seen in Figure 175.
FIGURE 171: L3-03 DIAGRAM OF COMPLETION AND STIMULATION (MICHIE, SIKS, SAUVE, & WAGES, 2016)

FIGURE 172: LISBURNE PRODUCTION/INJECTION PROFILES (BELFIELD, 1988)
FIGURE 173: TYPICAL COMPLETION OF ORIGINAL DEVELOPMENT WELLS (PAIGE & DAYTON, 1987)

FIGURE 174: LISBURNE FIELD PRODUCTION
15.4. **Midnight Sun**

The Midnight Sun field produces from the Kuparuk formation and is located at E pad, with an additional injector drilled from P1 in 2015 to inject miscible injectant (MI) and implement a MWAG flood. Production from the field began in 1998, and the field peaked at 12,000 bopd. The field has made 21 million barrels of oil and is currently producing 1,000 bopd from 5 active wells.
15.5. **North Prudhoe Bay**

The North Prudhoe Bay Field is located in the Greater Pt. McIntyre Area within the Prudhoe Bay Unit. The field was discovered in 1970 with the North Prudhoe Bay State 1 well, but today consists of a single inoperable well, WB-03, sometimes referred to as NP-03. It is an Ivishak/Sag play, with most of the historical production coming from the Ivishak. After the watercut rose in the Ivishak interval, a fracture treatment was performed in 1998 in the Sag River formation. This has since led to operational difficulties with continued proppant production and the well has been remained shut in since 2000 due to safety concerns. The area was covered in a 2014/2015 seismic survey; however, the area faces challenges due to compartmentalization, fluid uncertainty, and structural complexity (BP Exploration (Alaska) Inc., 2017).
FIGURE 178: NORTH PRUDHOE BAY STRUCTURE MAP (AOGCC, 2000)

FIGURE 179: NORTH PRUDHOE BAY PRODUCTION
15.6. Orion

The Orion field produces from the Schrader Bluff formation and is located at the L and V pads. Production from the field began in 2002, and the field peaked at 14,000 bopd. The field has made 34 million barrels of oil and is currently producing 4,000 bopd from approximately 30 active wells. The field is developed as a waterflood with MWAG.
FIGURE 182: SCHRADER BLUFF TYPE LOG (MCGUIRE, REDMAN, JHAVERI, YANCEY, & NING, 2005)

FIGURE 183: EXAMPLE COMPLETION OF A SCHRADER BLUFF MULTI-LATERAL WELL (TRIOLO, DAVIS, BUCK, FREYER, & SMITH, 2005)
15.7. POLARIS

The Polaris field produces from the Schrader Bluff formation and is located at the S and W pads. Production from the field began in 1999, and the field peaked over 6,000 bopd. The field has made 2 million barrels of oil and is currently producing 3,500 - 4,000 bopd from approximately 24 active wells. The field is developed as a waterflood with MWAG.
FIGURE 186: POLARIS WELL MAP (BP EXPLORATION (ALASKA) INC., 2016)

FIGURE 187: POLARIS FIELD PRODUCTION
15.8. **Prudhoe Bay**

Prudhoe Bay was discovered in 1969 with the drilling of Prudhoe Bay State 1 and became the discovery that changed Alaska. It produces from the Ivishak and Sag River formations. The field came on production in on June 20th, 1977, 40 years ago this past summer. Production peaked in 1987 producing 1.6 million barrels of oil per day, and the field has produced an astonishing 12.4 billion barrels of oil, 70% of all oil that has been produced on the North Slope. The field has had continual development drilling since discovery with 2,600 wells drilled. This number includes sidetrack wells, where the parent bore is often abandoned. Prudhoe is currently producing about 240,000 bopd from 850 active wells, about 45% of current North Slope production. Due to seasonal temperature variations and facility constraints, Prudhoe Bay exhibits a production profile that reflects the seasonal temperature, as the facilities are able to compress more gas during the cold arctic winters. The massive field utilizes multiple depletion mechanisms to maximize reservoir productivity and recovery. The field has a large gas cap, but without a gas export line, the produced gas is reinjected in the gas cap or injected in the waterflood for enhanced oil recovery. In 2016, 2.4 trillion cubic feet, or an average of 6.5 billion standard cubic feet a day was reinjected. Most wells in Prudhoe Bay can be considered to be producing from under the gas cap utilizing gravity drainage as a depletion mechanism, are in the waterflood area, or deplete by a combination of both. Prudhoe Bay’s waterflood section utilizes high graded produced gas as miscible injectant for a MWAG flood. The Prudhoe Bay waterflood is mostly developed with inverted nine-spot patterns. Additionally, a Gas Cap Water Injection (GCWI) project that began in 2002 has helped to stabilize reservoir pressures.
FIGURE 189: PRUDHOE BAY RECOVERY MECHANISMS MAP (BRODIE, JHAVERI, MOULDS, & HETLAND, 2012)

FIGURE 190: PRUDHOE BAY FIELD PRODUCTION
FIGURE 191: PRUDHOE BAY PRODUCTION AND ACTIVE WELL COUNT

FIGURE 192: PRUDHOE BAY FLUID PRODUCTION AND WATER INJECTION RATE
FIGURE 193: PRUDHOE BAY WATER PRODUCTION AND INJECTION RATE

FIGURE 194: PRUDHOE BAY FLUID RATE PRODUCTION BY OIL AND WATER RATE
FIGURE 195: PRUDHOE BAY OIL PRODUCTION AND GAS OIL RATIO

FIGURE 196: PRUDHOE BAY PRODUCTION AND WATERCUT
FIGURE 197: PRUDHOE BAY GAS PRODUCTION AND INJECTION

FIGURE 198: PRUDHOE BAY GAS OIL RATIO VS. CUM OIL
FIGURE 199: PRUDHOE BAY WATERCUT VS. CUM OIL

FIGURE 200: PRUDHOE BAY PRESSURES
Although over 2,500 wells have been drilled in Prudhoe Bay, less than 1,000 are active today. This is in part due to an active sidetrack campaign, where wells are redrilled to more favourable locations, but also due to aging wells, and facility constraints. A distribution of parent bore versus sidetrack number for active wells can be seen in Figure 210. This continual drilling over the last 50 years as seen in Figure 201, has resulted in a lower cum oil per well, however has contributed to a higher recovery. Figure 203 shows dynamically how the cum oil
per well has decreased with time since the early 1990s as the new wells increase the overall well count, however produce less than the average historic well. Figure 206 and Figure 207 show the decreasing average cum oil by drilled year. When it is considered by development phase, the initial development wells, or those that were drilled before production and during ramp-up, are only 9% of total wells drilled, however contribute 38% of the total production. The wells drilled during plateau make up 25% of the wells drilled, and 43% of the total production. The late life wells, those which were drilled after the start of Prudhoe Bay decline, make up 66% of the wells drilled, but only 19% of the total production. Although these wells have had less time online to produce large volumes, they also are unlikely to produce the volumes of the earlier wells due to dynamic changes in the reservoir.

![Cum Oil/Total Wells](image)

FIGURE 203: PRUDHOE BAY CUM OIL/TOTAL WELLS BY YEAR

![Average Production/Active Well](image)

FIGURE 204: PRUDHOE BAY AVERAGE PRODUCTION/ACTIVE WELL (BOPD/WELL)
FIGURE 205: PRUDHOE BAY AVERAGE PRODUCTION/PRODUCER (BOPD/WELL)

FIGURE 206: PRUDHOE BAY WELL CUM OIL BY PERMIT YEAR
FIGURE 207: PRUDHOE BAY NUMBER OF DRILLING PERMITS AND AVERAGE CUM OIL TO DATE OF ASSOCIATED WELLS BY YEAR

FIGURE 208: PRUDHOE BAY WELL COUNT BY DEVELOPMENT PHASE

Well Count by Development Phase

- Initial Development: 9%
- Transition: 25%
- Late Life: 66%
Cum Oil by Development Phase

- Initial Development: 38%
- Transition: 43%
- Late Life: 19%

Figure 209: Prudhoe Oil Cum Oil by Development Phase

Distribution of 2016 Prudhoe Bay Active Wells by Sidetrack Bore

- A: 38%
- Parent: 32%
- B: 20%
- C: 8%
- D: 2%
- E: 0%
- F: 0%

Figure 210: Distribution of 2016 Prudhoe Bay Active Wells by Sidetrack Bore
15.9. **Point McIntyre**

The Point McIntyre field, commonly referred to as Pt. Mac, is located to the north of Prudhoe Bay and produces from two drill sites, P1 and P2, sometimes called PM1 and PM2. It was discovered in 1988 produces from the Kuparuk formation. The field has two main producing sections, a gas cap to the south on the other side of a terrace fault, and a waterflood in the north, which is developed in inverted nine spot patterns and has an active MWAG flood. Pt. Mac produces to the Lisburne Production Center (LPC), which it shares with the other fields within GPMA. Production began in 1993 and peaked over 170,000 bopd. The field has produced 477 million barrels of oil and is producing 12,000 bopd from 40 wells.

FIGURE 211: PT. MCINTYRE WELL LOCATION MAP (BP EXPLORATION (ALASKA) INC, 2017)

FIGURE 212: PT. MCINTYRE FIELD PRODUCTION
15.10. **West Beach**

The West Beach Field is located in the Greater Pt. McIntyre Area within the Prudhoe Bay Unit. The field was discovered in 1976 with the West Beach State 3 well. It produces from the Kuparuk formation and has been delineated by eleven penetrations (seven wells and four sidetracks) is comprised currently comprised of WB-04, WB-05B, and an injector WB-06 (BP Exploration (Alaska) Inc, 2017). 92% of field production has been from WB-04, and has been predominately primary depletion. WB-06 was converted from a producer to a water injector and injected from 2001-2003, however very little production occurred during or since as the field has been largely shut in. Water was sourced from the nearby Prince Creek source water well WB-07. The injector WB-06 is inoperative due to annular communication and WB-04, the predominant producer, showed breakthrough 4 months from injection start-up. The field is currently shut-in and requires pipeline inspections to be brought back online. The area was covered in a 2014/2015 seismic survey; however, the area faces challenges due to fluid uncertainty (BP Exploration (Alaska) Inc., 2017).
FIGURE 214: WEST BEACH STRUCTURE MAP (AOGCC, 2000)

FIGURE 215: WEST BEACH PRODUCTION
15.11. **PUT RIVER**

The Put River field is a small accumulation overlying Prudhoe Bay in the Put River formation and produced from DS2. It consists of two producers, 02-23A and 02-27A and an injector 01-08A. The field has produced 3 million barrels of oil to date, peaking at 3,000 bopd.
16. **Point Thomson**

The Point Thomson field located to the west of ANWR and produces from the Thomson sands. Although originally discovered in 1977, production did not begin production until 2016. The field is operated by ExxonMobil and has suffered from facility problems. It has produced a half million barrels and has three active wells.
17. **Current Exploration**

The has been a lot of recent exploration activity on the North Slope in the last 5-10 years, particularly in the Western North Slope near or in NPRA. Many of these prospects are relatively immature in terms of their understanding of size and deliverability, and actual development profiles will likely vary widely compared to current anticipated numbers for the projects that will be advanced. For this study the owners’ projections were honored, though commentary on the feasibility of their profiles for some fields was added. Although there are several large new finds on the North Slope, some of these developments have been in progress for several years and have struggled with remoteness or marginal economics.
17.1. Mustang

The Mustang Field is in the Southern Miluveach Unit and is operated by Brooks Range Petroleum. The field will produce from Kuparuk “C” and “A” sands and is expected to consist of up to 9 production wells and 17 Injection wells. There are 24.7 million barrels of proved oil reserves with probable and possible reserves of 44-51 million barrels (Bailey, Brooks Range’s Mustang Development Moving Forward Again After Recent Hiatus, 2016). This is about a million barrels per well, about 2.75 million barrels per producer, and is conservative compared to other Kuparuk formation fields. This Producer:Injector ratio is also much lower than the average Kuparuk formation field, as they most are between 1.25-2. Although previously was anticipated to come on in 2017, the current development plan has a dedicated facility coming online in December 2018, with peak capacity at 15,000 bopd (Brooks Range Petroleum Corporation, 2017). Some of the development has been paid for with loans through AIDEA who provided a $20 million loan for the road and pad and $50 million dollars in financing for the facility (ADEA, 2017).
North Tarn 1 – Mud Log

Figure 224: North Tarn 1 Mud Log K10 Sand (214-176 Well File, 2017)

Figure 225: Mustang Development Schedule (Brooks Range Petroleum Corporation, 2017)
17.2. **Pikka**

17.2.1. **Exploration History**

The Pikka unit as seen in Figure 227 lies east of the Colville River Unit and west of the Oooguruk and Kuparuk River units. When formed in 2015, it encompassed 63,304 acres and in 2016 was expanded by 14,440 acres (Alaska Division of Oil and Gas, 2016) as seen in Figure 228. This is to help encompass the play fairway as seen in Figure 233. The well Qugruk 1PH found 210 feet of Nuiqsut sands with good resistivity and a sidetrack was drilled with a production test. This well was had about a 1,000 feet of horizontal section and was hydraulically fractured with approximately 255,000 pounds of proppant (Alaska Division of Oil and Gas, 2016). Over four days this well flowed and average of 400-950 bopd of 25 degree API oil (Alaska Division of Oil and Gas, 2016). Qugruk 3 was later drilled showing about 200 feet of sand in the Nuiqsut with shows, but also potential in the Nanushuk formation, and 30.5 degree API oil was recovered from an MDT. Qugruk 3 was sidetracked and the Qugruk 3A well encountered 13 foot thick Kuparuk sands bearing oil, and oil shows were observed in the mud log through the Nanushuk, Alpine, and Kuparuk sands (Alaska Division of Oil and Gas, 2016). Qugruk 6 drilled an approximately 1,000 foot horizontal section in the Nechelik sand and was fracture stimulated with 271,000 pounds of proppant, and flowed at an average rate of 140 bopd of 36 degree API oil and a producing GOR of 11,400 scf/bbl. Qugruk 301 well was drilled with a 2,000 foot horizontal lateral in the Nanushuk formation and was able to achieve rates as high as 4,600 bopd (Alaska Division of Oil and Gas, 2016).
FIGURE 227: PIKKA UNIT MAP (ALASKA DEPARTMENT OF NATURAL RESOURCES, DOG, 2015)

FIGURE 228: PIKKA UNIT EXPANSION AREA MAP (ALASKA DIVISION OF OIL AND GAS, 2016)
17.2.2. Development

In November 2017, Oil Search acquired interest in the Pikka unit and operatorship from Armstrong for $400 million, with an option to further increase their interest for an additional $450 million (Oil Search Limited, 2017). The
Pikka phase 1 development is expected to consist of 60 producers and 60 injectors from three drill sites, have a dedicated processing facility and plateau between 80,000 to 120,000 bopd recovering 500 million barrels of oil with billions more in contingent reserves (Oil Search Limited, 2017). The field is expected to come online in 2023. This means the expectation is for the field to have a 1:1 Producer:Injector ratio and average 4.2 million barrels per well, 8.3 million barrels per producer. Comparative to other pools, this is the equivalent of an Alpine field production profile, but with about a 40% improved well performance, as Alpine currently has 166 (156 active) wells. This assumption is also more than twice as productive as the next best Brookian aged field, Tarn, which has produced about 1.5 million barrels per well out of the Seabee formation. Assuming Qugruk 3 is a representative well of the play, which has permeabilities of 1-17 mD, and is in a sand 200 feet thick, with the high API oil, based on trends seen in Figure 16 the field is likely to have an actual cum oil per well between 1.5-2 million barrels, less than half of what is anticipated. Figure 44, Figure 76, and Figure 206 demonstrate that the initial wells drilled are more productive than subsequent wells, creating unrealistic expectations if future wells are assumed to perform like previous wells. Additionally, Figure 17 shows that fields that if online wells are used as type curve analogs for field development, it overestimates the productivity per well on average by a factor of 2.
FIGURE 233: NANUSHUK PLAY FAIRWAY IN PIKKA AND HORSESHOE UNITS (OIL SEARCH LIMITED, 2017)

FIGURE 234: NANUSHUK CROSS SECTION IN PIKKA UNIT (OIL SEARCH LIMITED, 2017)
17.3. HORSESHOE

Horseshoe is a continuation of Nanushuk play fairway in the Pikka Unit. The discovery was confirmed in 2016 with the Horseshoe 1 well. Bill Armstrong in an interview with the Petroleum News in 2016 said “We believe we have a proven oil pool that covers more than 25,000 acres, at a shallow depth of only 4,100 feet, with an oil column of 650-plus feet, up to 225 feet of net pay and an average porosity of 22 percent. Individual wells should be in excess of 10 million barrels each...Dream oil fields are still there to be found, especially in Alaska.” (Cashman, Armstrong Rumors Bunk, 2017). Although there have been many wells in Alaska that have produced more than 10 million barrels, no field has averaged more than 6 million barrels per well after full development. Horseshoe is estimated to be a 1.2 billion barrel discovery, which would make it the third largest field on the North Slope in terms of potential recovery. Since there is only a single well in Horseshoe, it is highly likely the recovery numbers will continue to change as more appraisal wells are drilled.
The Smith Bay Field is a potentially massive offshore field northwest of Teshekpuk Lake in NPRA with an estimated 6 billion barrels of 40-45 degree API oil. Caelus is the operator and estimates 1.8-2.4 billion barrels of oil are recoverable, with peak rates of 200,000 bopd. Caelus drilled CT-1 and CT-2 in 2015 and found 183 net feet of pay in one well and 223 net feet in the other, and expects potential well rates of 8,000-10,000 bopd per well, or 8 to 9 million barrels of oil per well (Lidji E., The Explorers 2017: Caelus Sitting on a Smith Bay Elephant, 2017). The formation is reported as being tight; however permeability measurements have not been made public. Using other North Slope production trends as analogs, and assuming Caelus predicted 8-9 mmbo for producers and planned a 1:1 Producer:Injector ratio; 200 net feet of pay with 0.5 cp viscosity oil, it would require 25-100 mD permeability to fall in trend for fields that averaged more than 4 million barrels per well as seen in Figure 16. To achieve 1.8 Billion barrels recovery with peak rates of 200,000 bopd, it would require 25 years of production at peak rate. A balanced development with a plateau rate 200,000 bopd would produce about 1 billion barrels. Kuparuk, a field of similar recovery volumes, had a plateau rate around 300,000 bopd that lasted about 10 years.
FIGURE 238: CAELUS LEASE HOLDINGS (CAELUS ENERGY LLC, N.D.)

FIGURE 239: SMITH BAY ESTIMATED EUR COMPARED TO OTHER NORTH SLOPE FIELDS (CAELUS ENERGY LLC, N.D.)
17.5. **Nuna**

The Nuna project is estimated to produce 75-150 million barrels of oil with a peak production of 15,000-18,000 barrels of oil per day (Caelus Energy LLC, n.d.). Caelus also applied for royalty modification for its Nuna project targeting the Torok formation and in 2015 it was reduced from 12.5-16.6667% to 5% (Department of Natural Resources, 2015). The royalty modification has since expired since the work agreement of spending at least $260 million and beginning sustained production by September 2017 (Lidji E., State Declines to Extend 2015 Royalty Relief Decision; Company Intends to Re-Apply, 2017). The Development is expected to cost $1.4 billion dollars and requires a new onshore drilling pad and facility tie-ins (Caelus Energy LLC, n.d.). The Company has spent $110 million to date on the project and plans to continue the project with a start-up in “2018 or later” and intends to reapply for royalty modification (Lidji E., State Declines to Extend 2015 Royalty Relief Decision; Company Intends to Re-Apply, 2017).
17.6. **HARRISON BAY**

The Harrison Bay targets, also known as Nikaitchuq North, are operated by Nikaitchuq who has a 40% working interest. The other interest owners are Shell (40%) and Repsol (20%), though the drilling occurs from Spy Island where ENI is a 100% owner and has 32 existing wells (ENI US Operating Co. Inc., 2017). These exploration wells are expected to have a measured depth of 34,000 feet and a true vertical depth of 8,000 feet, and would produce to existing facilities at Nikaitchuq.
FIGURE 243: HARRISON BAY PROJECT AREA MAP (ENI US OPERATING CO. INC., 2017)

FIGURE 244: HARRISON BAY EXTENDED REACH COMPARED TO OTHER ALASKAN WELLS (ENI US OPERATING CO. INC., 2017)
Table 11: Harrison Bay Exploration Activities (ENI US Operating Co. Inc., 2017)

<table>
<thead>
<tr>
<th>Proposed Activity</th>
<th>Start Date</th>
<th>End Date</th>
<th>No. of Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drill Nikaitchuq North (NN01)</td>
<td>12/10/2017</td>
<td>02/13/2018</td>
<td>65</td>
</tr>
<tr>
<td>NN01 Flow Test</td>
<td>02/13/2018</td>
<td>03/10/2018</td>
<td>25</td>
</tr>
<tr>
<td>NN01 P&A</td>
<td>03/10/2018</td>
<td>03/25/2018</td>
<td>15</td>
</tr>
<tr>
<td>Drill NN01 Sidetrack to Lateral & Complete</td>
<td>03/25/2018</td>
<td>04/14/2018</td>
<td>20</td>
</tr>
<tr>
<td>Perform Flow Test – Suspend</td>
<td>04/14/2018</td>
<td>05/14/2018</td>
<td>30</td>
</tr>
<tr>
<td>Drill Nikaitchuq North (NN02)</td>
<td>12/01/2018</td>
<td>02/14/2019</td>
<td>75</td>
</tr>
<tr>
<td>NN02 Flow Test</td>
<td>02/14/2019</td>
<td>03/11/2019</td>
<td>25</td>
</tr>
<tr>
<td>NN02 P&A</td>
<td>03/11/2019</td>
<td>03/26/2019</td>
<td>15</td>
</tr>
<tr>
<td>Drill NN02 Sidetrack to Lateral & Complete</td>
<td>03/26/2019</td>
<td>04/21/2019</td>
<td>26</td>
</tr>
<tr>
<td>Perform Flow Test – Suspend</td>
<td>04/21/2019</td>
<td>05/23/2019</td>
<td>32</td>
</tr>
</tbody>
</table>

Note: No drilling operations are planned during summer.

17.7. GMT1

The Greater Mooses Tooth 1 (GMT1, formally known as “Lookout”) is an Alpine satellite in NPRA to the west of CD5, and will use existing Alpine Facilities (ConocoPhillips Alaska). The development is expected to cost $900 million and production is expected to peak at 30,000 bopd. First oil is expected to occur at the end of 2018. The initial planned development includes four producers and five injectors, with the potential to increase to 33 wells (Brehmer, 2016).
TABLE 12: PROJECTED CRUDE PRODUCTION FROM GMT1 AS PREDICTED BY THE ALASKA DEPARTMENT OF REVENUE (BUREAU OF LAND MANAGEMENT, 2014)

<table>
<thead>
<tr>
<th>Year</th>
<th>Alpine</th>
<th>Total Alaska North Slope Barrels Per Day</th>
<th>GMT1*</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>66,700</td>
<td>538,300</td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>60,300</td>
<td>512,800</td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>60,500</td>
<td>512,300</td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>55,500</td>
<td>476,900</td>
<td>2,000</td>
</tr>
<tr>
<td>2018</td>
<td>47,200</td>
<td>443,300</td>
<td>20,000</td>
</tr>
<tr>
<td>2019</td>
<td>40,100</td>
<td>422,400</td>
<td>18,075</td>
</tr>
<tr>
<td>2020</td>
<td>34,400</td>
<td>399,400</td>
<td>10,250</td>
</tr>
<tr>
<td>2021</td>
<td>29,200</td>
<td>372,300</td>
<td>14,375</td>
</tr>
<tr>
<td>2022</td>
<td>26,000</td>
<td>344,500</td>
<td>12,500</td>
</tr>
<tr>
<td>2023</td>
<td>10,596</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2024</td>
<td>8,750</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2025</td>
<td>6,675</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2026</td>
<td>6,600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2027</td>
<td>4,695</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2028</td>
<td>4,435</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2029</td>
<td>4,176</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2030</td>
<td>3,933</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2031</td>
<td>3,694</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2032</td>
<td>3,488</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2033</td>
<td>3,235</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2034</td>
<td>3,094</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2035</td>
<td>2,856</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2036</td>
<td>2,744</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2037</td>
<td>2,684</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2038</td>
<td>2,434</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2039</td>
<td>2,285</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2040</td>
<td>2,159</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2041</td>
<td>2,033</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2042</td>
<td>1,914</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2043</td>
<td>1,793</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2044</td>
<td>1,793</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2045</td>
<td>1,509</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2046</td>
<td>1,505</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2047</td>
<td>1,414</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2048</td>
<td>1,336</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2049</td>
<td>1,258</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2050</td>
<td>1,185</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Description</th>
<th>Total CAPEX</th>
<th>Royalties</th>
<th>Property Tax</th>
<th>SCIT</th>
<th>Severance Tax</th>
<th>Royalties + Tax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternative A</td>
<td>CPAI Proposed GMT1 Project</td>
<td>$1,540</td>
<td>$1,041</td>
<td>$275</td>
<td>$279</td>
<td>$455</td>
<td>$2,050</td>
</tr>
<tr>
<td>Alternative B</td>
<td>Avoid Fish Creek Setback</td>
<td>$1,596</td>
<td>$1,041</td>
<td>$275</td>
<td>$279</td>
<td>$431</td>
<td>$2,034</td>
</tr>
<tr>
<td>Alternative C</td>
<td>Alternative Access (via Nuiqsut)</td>
<td>$1,739</td>
<td>$1,041</td>
<td>$316</td>
<td>$264</td>
<td>$362</td>
<td>$1,982</td>
</tr>
<tr>
<td>Alternative D1</td>
<td>Roadless Access to GMT-1</td>
<td>$1,955</td>
<td>$1,041</td>
<td>$345</td>
<td>$194</td>
<td>$127</td>
<td>$1,707</td>
</tr>
<tr>
<td>Alternative D2</td>
<td>Roadless Access with Seasonal Drilling Restriction</td>
<td>$2,353</td>
<td>$921</td>
<td>$399</td>
<td>$120</td>
<td>-92</td>
<td>$1,348</td>
</tr>
</tbody>
</table>

FIGURE 247: GMT1 HYPOTHETICAL DEVELOPMENT PROFILE

17.8. GMT2

The GMT2 development, previously known as “Spark” is southwest of GMT1 and expected to cost $1 billion and production is expected to peak between 25,000-30,000 bopd. First oil is currently planned for the end of 2020.
FIGURE 248: OIL AND GAS ACCUMULATIONS IN OR NEAR NORTHEAST NPRA FROM HOUSEKNECHT ET AL (BUREAU OF LAND MANAGEMENT, 2016)

FIGURE 249: GMT2 PROJECT MAP (BUREAU OF LAND MANAGEMENT, 2016)
17.9. Willow

The Willow Discovery is in the Greater Mooses tooth Unit and is estimated that it can produce up to 100,000 bopd and hold 300 million barrels of recoverable oil. Initial production may occur as early as 2023 (ConocoPhillips Alaska, 2017). It is in the Nanushuk formation, and is a similar Brookian clinoform topset play as Pikka.
17.10. **LIBERTY**

The Liberty field sits in 19 feet of sheltered waters in Foggy Island bay, to the east of Endicott and is owned by BP and Hilcorp, who is the operator. Although there have been multiple development plans in the past, such as ultra-extended-reach drilling at the expanded SDI drillsite of the Endicott field, current development plan is an island development similar to Northstar. Four wells have already penetrated the reservoir as seen in Figure 254. The Liberty field is expected to be similar to the neighboring Endicott field, and produce out of the Kekiktuk formation. There is an estimated 230 million barrels of oil in place, if analog field recovery factor (Endicott - 55%) can be achieved; Liberty may produce up to 167 MMBO (Hilcorp Alaska, LLC, 2015).
FIGURE 254: LIBERT UNIT MAP WITH AREA WELLS (HILCORP ALASKA, LLC, 2015)

FIGURE 255: LIBERTY STRUCTURE MAP - TOP RESERVOIR (HILCORP ALASKA, LLC, 2015)
TABLE 14: LIBERTY RESERVOIR ROCK PROPERTIES (HILCORP ALASKA, LLC, 2015)

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>LIBERTY</th>
<th>ENDICOTT (ANALOG FIELD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Gross Pay Thickness</td>
<td>230 ft</td>
<td>800 ft</td>
</tr>
<tr>
<td>Average Net Pay Thickness</td>
<td>190 ft</td>
<td>400 ft</td>
</tr>
<tr>
<td>Average Porosity, Range</td>
<td>18 – 20%</td>
<td>18 – 20%</td>
</tr>
<tr>
<td>Average So, Range</td>
<td>90 – 95%</td>
<td>90 – 95%</td>
</tr>
<tr>
<td>Average Permeability, Range</td>
<td>500 – 1,500 mD</td>
<td>400 – 1,600 mD</td>
</tr>
</tbody>
</table>

TABLE 15: LIBERTY RESERVOIR FLUID PROPERTIES (HILCORP ALASKA, LLC, 2015)

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>LIBERTY</th>
<th>ENDICOTT (ANALOG FIELD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>API gravity</td>
<td>24° to 27° API</td>
<td>23° to 24° API</td>
</tr>
<tr>
<td>Viscosity</td>
<td>0.68 cP</td>
<td>0.9 cP</td>
</tr>
<tr>
<td>Reservoir Temperature</td>
<td>215 °F</td>
<td>218 °F</td>
</tr>
<tr>
<td>Solution GOR, Rs</td>
<td>872 SCF/STB</td>
<td>770 SCF/STB</td>
</tr>
<tr>
<td>B_o</td>
<td>1.47 RB/STB</td>
<td>1.35 RB/STB</td>
</tr>
<tr>
<td>Psat (Bubble Point)</td>
<td>4973 psia</td>
<td>4838 psia</td>
</tr>
</tbody>
</table>

17.10.1. **Development**

The Liberty development is expected to consist of five producers and four injectors with peak rates of 10,000-15,000 bopd. Peak field rate is anticipated to reach 60,000-70,000 bopd, and have an economic field life of 15-20 years yielding an estimated 60-100 million barrels (Hilcorp Alaska, LLC, 2015). This is a 26%-43% recovery factor, about 7-11 MMBO/well or 12-20 MMBO/producer. This development has a low well density to support the high recovery per well (and minimizes risk and cost of additional wells), however it also lowers the field recovery factor compared to the analog. The Liberty project is also unique in that it intends to use truckable modules for its production facilities rather than utilizing a seal lift like most other facilities on the North Slope (Hilcorp Alaska, LLC, 2015).

![Figure 256: Liberty Project Schedule](image.png)
17.11. **Umiat**

The Umiat field was discovered by the Navy in 1946 and has an estimated oil in place of 1.5 billion barrels in place (Hanks, et al., 2014). Current ownership of the leases is held by Malamute Energy, however the company has no plans of starting development drilling in the next year (Bailey, Malamute Files Contingency Plan For Umiat; No Immediate Drilling, 2017). Linc Energy, a recent owner of the Umiat Field, estimated field reserves around 155 million barrels of 45 degree API oil (Bradner, 2015). Linc’s development plan for the field included
35 wells, producing 30,000 bopd after scaling back from development programs ranging between 70-150 wells and 45,000 bopd (Lidji E., Linc Bankruptcy Filing, 2016). Although it has been a known accumulation for 70 years, it has yet to come on production, in part due to its remoteness.

18. Trans Alaska Pipeline Low Flow

One of the ongoing concerns for the future of the North Slope is keeping the oil production high enough to maintain velocity in the pipeline to prevent major flow assurance problems. The minimum throughput of 800 mile long Trans Alaska Pipeline (TAPS) and what modifications will need to be made for ever decreasing oil production will be a major topic over the next few decades. Due to the fact that all North Slope fields share a single export line, when it becomes uneconomic or not feasible to run the line, all fields on the slope will be shut in, even if individually they may still be productive fields. Increased oil production on the North Slope helps prolong the life of all fields, as no recent discovery can maintain TAPS minimum flow individually.

18.1 TAPS Low Flow Study

In 2011, Alyeska, the operator of the TAPS, prepared a “Low Flow Impact Study.” This report detailed issues that arise as oil rates decrease, including water dropout and corrosion, ice formation, wax deposition, and geotechnical concerns around the buried portions of the pipeline. The conclusions of the study found that reliable operating could be achieved to 550,000 bopd under normal conditions, and could be extended to about 350,000 with mitigations in place such as adding additional heat (Alyeska Pipeline Service Company, 2011).
FIGURE 260: TRANS ALASKA PIPELINE SYSTEM (ALYESKA PIPELINE SERVICE COMPANY, 2011)

FIGURE 261: TAPS CRITICAL ISSUES AND SOLUTIONS AT LOW FLOW (ALYESKA PIPELINE SERVICE COMPANY, 2011)
TABLE 16: TRANS ALASKA PIPELINE OPERATING ASSUMPTIONS WITHOUT EXTERNAL HEAT [ALYESKA PIPELINE SERVICE COMPANY, 2011]

<table>
<thead>
<tr>
<th>Flow Rate (BPD)</th>
<th>PS1 - NPM Velocity</th>
<th>NPM to VPR Flow Rate</th>
<th>NPM to VPR Velocity</th>
<th>VPR to VMT Flow Rate</th>
<th>VPR to VMT Velocity</th>
<th>Reynolds Number</th>
<th>Trans Oil Time PS01 to VMT</th>
<th>Crude Oil Reynolds Number Min/Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>600,000</td>
<td>3.25 feet/sec</td>
<td>565,000 BPD</td>
<td>2.94 feet/sec</td>
<td>553,000 BPD</td>
<td>2.94 feet/sec</td>
<td>15.5 Days</td>
<td>5.48E+4</td>
<td>3.37E+5</td>
</tr>
<tr>
<td>500,000</td>
<td>2.7 feet/sec</td>
<td>465,000 BPD</td>
<td>2.4 feet/sec</td>
<td>453,000 BPD</td>
<td>2.4 feet/sec</td>
<td>18.7 Days</td>
<td>3.85E+4</td>
<td>2.81E+5</td>
</tr>
<tr>
<td>400,000</td>
<td>2.15 feet/sec</td>
<td>365,000 BPD</td>
<td>1.86 feet/sec</td>
<td>353,000 BPD</td>
<td>1.86 feet/sec</td>
<td>23.5 Days</td>
<td>2.53E+4</td>
<td>2.26E+5</td>
</tr>
<tr>
<td>300,000</td>
<td>1.61 feet/sec</td>
<td>265,000 BPD</td>
<td>1.33 feet/sec</td>
<td>253,000 BPD</td>
<td>1.33 feet/sec</td>
<td>31.8 Days</td>
<td>1.45E+4</td>
<td>1.71E+5</td>
</tr>
</tbody>
</table>

FIGURE 262: TAPS CUMULATIVE VOLUME OF WAX UNDER DIFFERENT FLOW RATES [ALYESKA PIPELINE SERVICE COMPANY, 2011]
FIGURE 263: SCRAPER PIGS IN PIPELINE UNDER LOW FLOW (ALYESKA PIPELINE SERVICE COMPANY, 2011)

FIGURE 264: TAPS WATER HOLD-UP UNDER LOW FLOW (ALYESKA PIPELINE SERVICE COMPANY, 2011)
18.2. **State of Alaska Decision on Low Flow**

In December 2011 Judge Sharon Gleason in a court decision about the TAPS valuation for municipal property taxes assumed the low flow limit to be 100,000 bopd (Bailey, A TAPS Bottom Line, 2012). This was based on a BP document by Phil Carpenter who concluded throughput could be reduced to 70,000-100,000 bopd if heaters were installed along the line, at a cost of about $3 billion (Bailey, A TAPS Bottom Line, 2012). As seen in Figure 272, without additional development, North Slope will fall below the Alyeska low flow study limit in the next ten years, and will reach 100,000 bopd in the next 40 years. Current planned developments, if successful, keep the North Slope above 350,000 bopd for an additional 10-15 years, as seen in Figure 275.
FIGURE 266: MONTHS OF THE YEAR REQUIRING HEAT UNDER LOW FLOW (BP PIPELINES ALASKA, INC, 2010)

FIGURE 267: TAPS HEATING REQUIREMENT UNDER LOW FLOW (BP PIPELINES ALASKA, INC, 2010)
19. **Future Alaska Production**

Forecasting Alaska North Slope production is complex due to the interactions between the different fields, changes in activity, differing levels of field maturity, and shared field constraints between anchor fields and their associated satellites. Examples of activity changes include Alpine, where drilling at CD5 increased production from 20,000 bopd to 50,000 bopd; Lisburne where a recent drilling campaign and other work helped increased production from 4,000-5,000 bopd to 13,000-15,000 bopd; Raven, a small pool where a sub 300 bopd well was sidetracked with over 1,000 bopd of benefit; and Tarn which arrested it’s decline and production from 5,000 bopd to a nearly flat 8,000 bopd. Some fields are currently experiencing negative decline as production is increasing in the Milne Sag and Milne Schrader pools, Nanuq, Northstar Kuparuk, and Oooguruk Nuiqsut. Nikaitchuq also appears to be just coming off plateau, complicating forecasts. Pt. Thomson has lacked plant reliability suitable for production forecasts. However, as seen in Figure 4, nearly half of the North Slope production comes from Prudhoe Bay, and around two thirds of North Slope production comes from Prudhoe Bay, Kuparuk, and Alpine; meaning small changes in decline rates in those fields have a larger impact in overall production forecasts than comparatively larger changes in the smaller fields. The larger uncertainty lies in future field developments, their first oil production dates, accuracy of predictions, and what remains left to be discovered. Due to the complexity of matching Prudhoe Bay’s temperature dependant production history, a smoothed average production profile was used in estimating future production trends. Figure 437 and Figure 438 show that the forecasts used in this study incorporates a decline higher than those predicted by the Alaska Department of Revenue (DOR), however Figure 270 demonstrates that the DOR has a history of over predicting future production and assuming less decline than actually occurs.
FIGURE 269: DOG FORECAST ERRORS IN YEARS 1-10 (UMEKWE, 2017)

FIGURE 270: ACTUAL PRODUCTION VS. FORECASTED PRODUCTION (UMEKWE, 2017)
FIGURE 271: NORTH SLOPE EXISTING FIELD PRODUCTION AND FORECAST BY UNIT

FIGURE 272: NORTH SLOPE FORECASTED PRODUCTION WITH LOW FLOW LIMITS HIGHLIGHTED
FIGURE 273: DIVISION OF OIL AND GAS FORECASTED RATES WITH PROJECTS (UMEKWE, 2017)

FIGURE 274: NORTH SLOPE FORECASTED PRODUCTION WITH EXPLORATION DEVELOPMENT
FIGURE 275: NORTH SLOPE FORECASTED PRODUCTION WITH EXPLORATION DEVELOPMENT 2010-2060

FIGURE 276: FORECASTED NORTH SLOPE PRODUCTION SOURCES DISTRIBUTION WITH EXPLORATION
Alaska’s petroleum tax code is complex, and changes often. The current tax code, the More Alaska Production Act, commonly referred to as Senate Bill 21 (SB21) is a 35% base tax with a series of optional credits. There are per barrel production credits, small operator credits, exploration credits, amongst others as well as eligible deductible expenses. To simplify estimation of petroleum tax revenue estimations for this study, Alaska Department of Revenue forecasts from Spring 2017 were compared to forecasted production, oil prices, and tax revenue to generate a correlation of approximately where tax revenue per taxable barrel is equal to $0.0682x - 2.3727, where x is the oil price. This correlation may not hold true at higher oil prices when tax credits have a smaller influence. Petroleum property taxes, which average around $100 million/year and corporate income taxes are not addressed here. It is unclear from the Department of Revenue published forecasts how petroleum corporate income taxes relate to production and price. Although there are some variances in lease royalty rates, the majority of North Slope production has a 12.5% state royalty rate, and that is used as an average for this analysis. In royalty valuation, wellhead value of oil is assumed to be 83% of oil price to account for midstream costs. As seen in Figure 279, the majority of the oil revenue is derived from royalties, and not the additional production tax. Although the amount of production tax increases with oil price, the value of the royalty barrels also increases. Overall, a 1% change in the price of oil results in about a 1.3% change in revenue. Although future production from year to year is generally stable and can be predicted within a margin of error of a few percent for near term forecasts, the price of oil is far more volatile. In Figure 277, the DOR forecast shows an increase in oil price greater than decline, resulting in overall increased revenue. Under flat, or only moderately increasing oil prices, revenue will continue to drop with decline.

![Graph showing the correlation between oil price and Alaska Production Tax forecasted revenue. The equation for the line is y = 0.0682x - 2.3727 with an R² value of 0.979.](image-url)
FIGURE 278: STATE REVENUE BY OIL PRICE

FIGURE 279: STATE REVENUE DISTRIBUTION BY OIL PRICE
FIGURE 280: COMPARISON OF THE ALASKA DOR PRODUCTION FORECAST TO THE STUDY FORECAST

FIGURE 281: COMPARISON OF THE ALASKA DOR REVENUE 10 YEAR FORECAST TO THE STUDY FORECAST
FIGURE 282: FORECASTED ALASKA STATE REVENUE FROM PETROLEUM TAXES AND ROYALTIES, $50/BBL

FIGURE 283: FORECASTED ALASKA STATE REVENUE FROM PETROLEUM TAXES AND ROYALTIES, $75/BBL
Figure 284: Forecasted Alaska State Revenue from Petroleum Taxes and Royalties, $100/Bbl

Figure 285: Forecasted Alaska State Revenue from Petroleum Taxes and Royalties, $50/Bbl A 1%/Year Increase in Oil Price
FIGURE 286: FORECASTED ALASKA STATE REVENUE FROM PETROLEUM TAXES AND ROYALTIES, $50/BBL WITH A 2%/YEAR INCREASE IN OIL PRICE

TABLE 17: ROYALTY + TAX REVENUE OF PROJECT FORECAST UNDER SELECTED PRICE PATHS (ALASKA DEPARTMENT OF REVENUE, 2018)

<table>
<thead>
<tr>
<th>Year, Price per Barrel in $</th>
<th>Royalty + Tax Revenue in $ millions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019</td>
<td></td>
</tr>
<tr>
<td>DOR Spring 2018 Official</td>
<td></td>
</tr>
<tr>
<td>Price Per Barrel</td>
<td>63</td>
</tr>
<tr>
<td>Royalty + Tax Revenue</td>
<td>1251</td>
</tr>
<tr>
<td>NYMEX Futures</td>
<td></td>
</tr>
<tr>
<td>Price Per Barrel</td>
<td>62</td>
</tr>
<tr>
<td>Royalty + Tax Revenue</td>
<td>1226</td>
</tr>
<tr>
<td>EIA STEO</td>
<td></td>
</tr>
<tr>
<td>Price Per Barrel</td>
<td>60</td>
</tr>
<tr>
<td>Royalty + Tax Revenue</td>
<td>1176</td>
</tr>
<tr>
<td>EIA AEO Base/Reference</td>
<td></td>
</tr>
<tr>
<td>Price Per Barrel</td>
<td>67</td>
</tr>
<tr>
<td>Royalty + Tax Revenue</td>
<td>1269</td>
</tr>
<tr>
<td>Analysts Average</td>
<td></td>
</tr>
<tr>
<td>Price Per Barrel</td>
<td>64</td>
</tr>
<tr>
<td>Royalty + Tax Revenue</td>
<td>1275</td>
</tr>
</tbody>
</table>
21. **Conclusions**

Central North Slope fields have sufficient history and similar attributes that future developments can use existing fields as analogs to make predictions. This is aided by many of the fields sharing the same source rocks, and being produced out of a small number of regionally extensive formations. New developments, farther away from existing developments should have a large prolific anchor field, as smaller satellite sized accumulations historically cannot deliver adequate rate. After 40 years of production, Prudhoe Bay still is the dominant field on the North Slope, accounting for 45% of current production, and acts as an anchor field for all others. Relatively large changes in the non-anchor field pools are only able to change North Slope production by a couple of percent due to the nature of their size compared to Prudhoe Bay, Kuparuk and Alpine, although they may be economic within their own development. New developments however, are able to materially contribute to changes in North Slope production if they are large enough. With continued activity in the many fields, creating an accurate forecast is challenging, although the overall trend of the North Slope is still a steady decline. Without new developments, the Trans Alaska Pipeline will need to make changes to accommodate low flow rates in the next ten years. Currently identified new developments have the potential to extend current production rates 10-20 years, assuming they deliver as anticipated on the project schedules announced. Some of these announced developments and discoveries have announced productivity rates that are not realistic compared to analog well performance, and will likely require many more wells to achieve the announced rates and volumes, which negatively affects the economics of the developments. The Alaska Department of Revenue's forecasts for state revenue assumes minimal production decline the average decline and a steady increase in oil prices of about 5% per year, the first of which is unlikely to occur without new developments coming online to offset decline and the later could be considered an optimistic price forecast. New and large North Slope developments are critical to continue the operation of TAPS, and revenue to the State of Alaska.
FIGURE 287: RECENT NORTH SLOPE PRODUCTION BY UNIT

FIGURE 288: RECENT PERCENTAGE OF NORTH SLOPE PRODUCTION BY UNIT
FIGURE 291: 2014 NORTH SLOPE PRODUCTION SOURCES BY FIELD

Prudhoe Bay 46%
Kuparuk 16%
Alpine 7%
Other Fields 25%
NorthStar 2%
Borealis 2%
OzgreSQL 2%
Fiel 3%
Phillips 3%
WestSak 3%
Milne Point 1%
Nikaitchuq 4%
Aurora 1%
LeBourne 1%
Endicott 2%
Other Fields 1%

<table>
<thead>
<tr>
<th>Field</th>
<th>Reference Datum (TVDSS)</th>
<th>Oil Viscosity @ Original Pressure (cp)</th>
<th>Oil Gravity (°API)</th>
<th>Permeability (mD)</th>
<th>Net Pay (ft)</th>
<th>KH/μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Badami (oil)</td>
<td>10500</td>
<td>0</td>
<td>30.5</td>
<td>200.5</td>
<td>0</td>
<td>52226</td>
</tr>
<tr>
<td>Alpine</td>
<td>7000</td>
<td>0.46</td>
<td>40</td>
<td>500.5</td>
<td>48</td>
<td>1369</td>
</tr>
<tr>
<td>Fiord</td>
<td>6850</td>
<td>0.97</td>
<td>29</td>
<td>59</td>
<td>22.5</td>
<td>175</td>
</tr>
<tr>
<td>Nanuq</td>
<td>6150</td>
<td>0.5</td>
<td>40</td>
<td>2.5</td>
<td>35</td>
<td>78</td>
</tr>
<tr>
<td>Nanuq_Kuparuk</td>
<td>7000</td>
<td>0.69</td>
<td>40</td>
<td>100</td>
<td>6</td>
<td>870</td>
</tr>
<tr>
<td>Qannik</td>
<td>4000</td>
<td>2</td>
<td>29</td>
<td>13</td>
<td>12</td>
<td>78</td>
</tr>
<tr>
<td>Elder</td>
<td>9700</td>
<td>0</td>
<td>25</td>
<td>134</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Endicott</td>
<td>10000</td>
<td>0</td>
<td>23</td>
<td>675</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sag Delta North</td>
<td>10000</td>
<td>0</td>
<td>25</td>
<td>301</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Minke</td>
<td>9800</td>
<td>0.14</td>
<td>25</td>
<td>185</td>
<td>84</td>
<td>111000</td>
</tr>
<tr>
<td>Kuparuk</td>
<td>6200</td>
<td>2.2</td>
<td>24</td>
<td>150</td>
<td>100</td>
<td>6818</td>
</tr>
<tr>
<td>Meltwater</td>
<td>5400</td>
<td>0.75</td>
<td>36</td>
<td>10</td>
<td>95</td>
<td>1267</td>
</tr>
<tr>
<td>Tabasco</td>
<td>3100</td>
<td>251</td>
<td>16.5</td>
<td>5500</td>
<td>132</td>
<td>2892</td>
</tr>
<tr>
<td>Tarn</td>
<td>5200</td>
<td>0.55</td>
<td>37</td>
<td>10</td>
<td>90</td>
<td>1636</td>
</tr>
<tr>
<td>West Sak</td>
<td>3500</td>
<td>42</td>
<td>19</td>
<td>1007.5</td>
<td>70</td>
<td>1679</td>
</tr>
<tr>
<td>Milne_Kuparuk</td>
<td>7000</td>
<td>4.35</td>
<td>23</td>
<td>55</td>
<td>32.5</td>
<td>411</td>
</tr>
<tr>
<td>Milne_Sag</td>
<td>8700</td>
<td>0.33</td>
<td>34.4</td>
<td>13.5</td>
<td>31.5</td>
<td>1289</td>
</tr>
<tr>
<td>Milne_Schrader</td>
<td>4000</td>
<td>120</td>
<td>18</td>
<td>1550</td>
<td>30</td>
<td>388</td>
</tr>
<tr>
<td>Milne_Ugnu</td>
<td>3500</td>
<td>10500</td>
<td>11.5</td>
<td>2500</td>
<td>75</td>
<td>18</td>
</tr>
<tr>
<td>Nakaitchuq</td>
<td>3760</td>
<td>143</td>
<td>17.5</td>
<td>300</td>
<td>32.5</td>
<td>68</td>
</tr>
<tr>
<td>Northstar</td>
<td>11100</td>
<td>0.14</td>
<td>44</td>
<td>188</td>
<td>105</td>
<td>141000</td>
</tr>
<tr>
<td>Oooguruk_Kuparuk</td>
<td>6050</td>
<td>2</td>
<td>24.5</td>
<td>75</td>
<td>30</td>
<td>1125</td>
</tr>
<tr>
<td>Oooguruk_Nuiqsut</td>
<td>6350</td>
<td>5.5</td>
<td>22</td>
<td>3.1</td>
<td>75</td>
<td>42</td>
</tr>
<tr>
<td>Oooguruk_Torok</td>
<td>5000</td>
<td>4</td>
<td>24</td>
<td>4</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Aurora</td>
<td>6700</td>
<td>0.72</td>
<td>27.5</td>
<td>105</td>
<td>60</td>
<td>8750</td>
</tr>
<tr>
<td>Borealis</td>
<td>6600</td>
<td>2.3</td>
<td>25.25</td>
<td>150.5</td>
<td>60</td>
<td>3926</td>
</tr>
<tr>
<td>Lisburne</td>
<td>8900</td>
<td>0.9</td>
<td>27</td>
<td>1.05</td>
<td>125</td>
<td>146</td>
</tr>
<tr>
<td>Midnight Sun</td>
<td>8050</td>
<td>1.68</td>
<td>27</td>
<td>780.5</td>
<td>35</td>
<td>16260</td>
</tr>
<tr>
<td>North Prudhoe</td>
<td>9245</td>
<td>0.425</td>
<td>35</td>
<td>590</td>
<td>20</td>
<td>27765</td>
</tr>
<tr>
<td>Niakuk</td>
<td>9200</td>
<td>0.94</td>
<td>24.9</td>
<td>500</td>
<td>105</td>
<td>55851</td>
</tr>
<tr>
<td>Orion</td>
<td>4400</td>
<td>69.5</td>
<td>18.5</td>
<td>705</td>
<td>110</td>
<td>1116</td>
</tr>
<tr>
<td>Polaris</td>
<td>5000</td>
<td>62.5</td>
<td>20</td>
<td>905</td>
<td>67.5</td>
<td>977</td>
</tr>
<tr>
<td>Prudhoe</td>
<td>8800</td>
<td>0.81</td>
<td>28</td>
<td>265</td>
<td>200</td>
<td>65432</td>
</tr>
<tr>
<td>Pt. McIntyre</td>
<td>8800</td>
<td>0.9</td>
<td>27</td>
<td>200</td>
<td>156</td>
<td>34667</td>
</tr>
<tr>
<td>West Beach</td>
<td>8800</td>
<td>1.04</td>
<td>25.7</td>
<td>107</td>
<td>71</td>
<td>7305</td>
</tr>
</tbody>
</table>
TABLE 19: SELECTED FIELD DYNAMICS

<table>
<thead>
<tr>
<th>Field</th>
<th>Cum Total Oil</th>
<th>Average Producer:Injector Ratio</th>
<th>Total Wells</th>
<th>Active Wells</th>
<th>Cum Oil/Lifetime Wells</th>
<th>Cum Oil/Active Pro Wells</th>
<th>Profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Badami (oil)</td>
<td>7.30</td>
<td>7</td>
<td>10</td>
<td>9</td>
<td>0.73</td>
<td>1.34</td>
<td></td>
</tr>
<tr>
<td>Alpine</td>
<td>443.90</td>
<td>1</td>
<td>166</td>
<td>156</td>
<td>2.67</td>
<td>11.39</td>
<td></td>
</tr>
<tr>
<td>Ford</td>
<td>86.21</td>
<td>1.35</td>
<td>34</td>
<td>29</td>
<td>1.95</td>
<td>7.13</td>
<td></td>
</tr>
<tr>
<td>Nimaq</td>
<td>3.75</td>
<td>1.5</td>
<td>12</td>
<td>10</td>
<td>0.31</td>
<td>1.11</td>
<td></td>
</tr>
<tr>
<td>Nanaq_Kuparuk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qannik</td>
<td>6.01</td>
<td>2</td>
<td>9</td>
<td>9</td>
<td>0.67</td>
<td>1.16</td>
<td></td>
</tr>
<tr>
<td>Eider</td>
<td>2.83</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1.41</td>
<td>2.56</td>
<td></td>
</tr>
<tr>
<td>Endicott</td>
<td>497.72</td>
<td>2.5</td>
<td>129</td>
<td>103</td>
<td>3.86</td>
<td>10.04</td>
<td></td>
</tr>
<tr>
<td>Sag Delta North</td>
<td>8.91</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>1.78</td>
<td>4.47</td>
<td></td>
</tr>
<tr>
<td>Mieke</td>
<td>1.38</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1.38</td>
<td>1.45</td>
<td></td>
</tr>
<tr>
<td>Kuparuk</td>
<td>2409.91</td>
<td>1.3</td>
<td>1112</td>
<td>965</td>
<td>2.17</td>
<td>7.73</td>
<td></td>
</tr>
<tr>
<td>Methwater</td>
<td>19.38</td>
<td>2</td>
<td>19</td>
<td>19</td>
<td>1.02</td>
<td>2.33</td>
<td></td>
</tr>
<tr>
<td>Tabasco</td>
<td>19.65</td>
<td>5.1</td>
<td>12</td>
<td>12</td>
<td>1.64</td>
<td>3.54</td>
<td></td>
</tr>
<tr>
<td>Tarn</td>
<td>118.79</td>
<td>2</td>
<td>77</td>
<td>68</td>
<td>1.54</td>
<td>5.20</td>
<td></td>
</tr>
<tr>
<td>West Sak</td>
<td>84.34</td>
<td>1.3</td>
<td>141</td>
<td>121</td>
<td>0.60</td>
<td>2.56</td>
<td></td>
</tr>
<tr>
<td>Milne_Kuparuk</td>
<td>255.26</td>
<td>1.8</td>
<td>204</td>
<td>179</td>
<td>1.25</td>
<td>4.36</td>
<td></td>
</tr>
<tr>
<td>Milne_Sag</td>
<td>2.94</td>
<td>2</td>
<td>9</td>
<td>7</td>
<td>0.33</td>
<td>1.87</td>
<td></td>
</tr>
<tr>
<td>Milne_Schrader</td>
<td>77.61</td>
<td>1</td>
<td>159</td>
<td>133</td>
<td>0.49</td>
<td>2.46</td>
<td></td>
</tr>
<tr>
<td>Milne_Uggnu</td>
<td>0.12</td>
<td></td>
<td>6</td>
<td>6</td>
<td>0.02</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>Nikaitchaq</td>
<td>35.72</td>
<td>1.3</td>
<td>51</td>
<td>51</td>
<td>0.70</td>
<td>1.79</td>
<td></td>
</tr>
<tr>
<td>Northstar</td>
<td>166.85</td>
<td>2.6</td>
<td>29</td>
<td>27</td>
<td>5.75</td>
<td>13.90</td>
<td></td>
</tr>
<tr>
<td>Oooguruk_Kuparuk</td>
<td>8.50</td>
<td>1.6</td>
<td>8</td>
<td>7</td>
<td>1.06</td>
<td>3.33</td>
<td></td>
</tr>
<tr>
<td>Oooguruk_Nuquagat</td>
<td>19.01</td>
<td>2.1</td>
<td>31</td>
<td>31</td>
<td>0.61</td>
<td>2.12</td>
<td></td>
</tr>
<tr>
<td>Oooguruk_Torok</td>
<td>0.84</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>0.21</td>
<td>0.59</td>
<td></td>
</tr>
<tr>
<td>Aurora</td>
<td>42.61</td>
<td>1.5</td>
<td>40</td>
<td>36</td>
<td>1.07</td>
<td>3.89</td>
<td></td>
</tr>
<tr>
<td>Borealis</td>
<td>81.68</td>
<td>1.5</td>
<td>56</td>
<td>54</td>
<td>1.46</td>
<td>3.86</td>
<td></td>
</tr>
<tr>
<td>Lisburne</td>
<td>187.56</td>
<td>9.5</td>
<td>100</td>
<td>86</td>
<td>1.88</td>
<td>5.75</td>
<td></td>
</tr>
<tr>
<td>Midnight Sun</td>
<td>21.03</td>
<td>0.65</td>
<td>6</td>
<td>6</td>
<td>3.51</td>
<td>13.27</td>
<td></td>
</tr>
<tr>
<td>North Prudhoe</td>
<td>2.03</td>
<td></td>
<td>1</td>
<td>1</td>
<td>2.07</td>
<td>1.99</td>
<td></td>
</tr>
<tr>
<td>Niakuk</td>
<td>95.05</td>
<td>2</td>
<td>35</td>
<td>24</td>
<td>2.74</td>
<td>8.39</td>
<td></td>
</tr>
<tr>
<td>Orion</td>
<td>34.33</td>
<td>0.5</td>
<td>48</td>
<td>47</td>
<td>0.72</td>
<td>5.43</td>
<td></td>
</tr>
<tr>
<td>Polaris</td>
<td>21.03</td>
<td>0.5</td>
<td>29</td>
<td>28</td>
<td>0.73</td>
<td>3.34</td>
<td></td>
</tr>
<tr>
<td>Prudhoe</td>
<td>12397.39</td>
<td>3.3</td>
<td>2999</td>
<td>1378</td>
<td>4.77</td>
<td>34.98</td>
<td></td>
</tr>
<tr>
<td>Pt. McIntyre</td>
<td>477.28</td>
<td>2.9</td>
<td>93</td>
<td>77</td>
<td>5.13</td>
<td>14.01</td>
<td></td>
</tr>
<tr>
<td>West Beach</td>
<td>3.59</td>
<td></td>
<td>3</td>
<td>3</td>
<td>1.20</td>
<td>2.95</td>
<td></td>
</tr>
<tr>
<td>Pt. Thomson</td>
<td>0.47</td>
<td>0.5</td>
<td>2</td>
<td>2</td>
<td>0.24</td>
<td>1.27</td>
<td></td>
</tr>
<tr>
<td>Badami_undef</td>
<td>0.45</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
<td>0.48</td>
<td></td>
</tr>
<tr>
<td>PullRiver</td>
<td>3.01</td>
<td>1.3</td>
<td>5</td>
<td>5</td>
<td>0.59</td>
<td>2.34</td>
<td></td>
</tr>
<tr>
<td>Raven</td>
<td>3.53</td>
<td>1.3</td>
<td>5</td>
<td>5</td>
<td>0.59</td>
<td>2.34</td>
<td></td>
</tr>
<tr>
<td>Northstar_Kuparuk</td>
<td>3.13</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1.57</td>
<td>2.95</td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 292: PRUDHOE BAY OIL AND NGL PRODUCTION
FIGURE 293: LISBURN OIL AND NGL PRODUCTION

FIGURE 294: PT. MCINTYRE OIL AND NGL PRODUCTION
FIGURE 295: WEST BEACH OIL AND NGL PRODUCTION

FIGURE 296: NORTH PRUDHOE OIL AND NGL PRODUCTION
FIGURE 299: NORTHSTAR OIL AND NGL PRODUCTION

FIGURE 300: NORTHSTAR KUPARUK OIL AND NGL PRODUCTION
FIGURE 301: ENIDCOTT OIL AND NGL PRODUCTION

FIGURE 302: SAG DELTA NORTH OIL AND NGL PRODUCTION
FIGURE 303: KUPARUK OIL AND NGL PRODUCTION

FIGURE 304: AVERAGE PRODUCTION/ACTIVE WELL (BOPD/WELL) 2010-2017 FIELDS WITH ALPINE LIKE FORMATION
FIGURE 305: AVERAGE PRODUCTION/ACTIVE WELL (BOPD/WELL) 2010-2017 FIELDS WITH BROOKIAN FORMATION

FIGURE 306: AVERAGE PRODUCTION/ACTIVE WELL (BOPD/WELL) 2010-2017 FIELDS WITH IVISHAK/SAG FORMATION
FIGURE 307: AVERAGE PRODUCTION/ACTIVE WELL (BOPD/WELL) 2010-2017 FIELDS WITH KUPARUK LIKE FORMATION

FIGURE 308: AVERAGE PRODUCTION/ACTIVE WELL (BOPD/WELL) 2010-2017 FIELDS WITH SCHRADER BLUFF LIKE FORMATION
FIGURE 309: AVERAGE PRODUCTION/ACTIVE WELL (BOPD/WELL) 2010-2017 FOR COLVILLE RIVER UNIT FIELDS

FIGURE 310: AVERAGE PRODUCTION/ACTIVE WELL (BOPD/WELL) 2010-2017 FOR DUCK ISLAND UNIT FIELDS
FIGURE 311: AVERAGE PRODUCTION/ACTIVE WELL (BOPD/WELL) 2010-2017 FOR KUPARUK RIVER UNIT FIELDS

FIGURE 312: AVERAGE PRODUCTION/ACTIVE WELL (BOPD/WELL) 2010-2017 FOR MILNE POINT UNIT FIELDS
FIGURE 313: AVERAGE PRODUCTION/ACTIVE WELL (BOPD/WELL) 2010-2017 FOR NORTHSTAR UNIT FIELDS

FIGURE 314: AVERAGE PRODUCTION/ACTIVE WELL (BOPD/WELL) 2010-2017 FOR OOOGURUK UNIT FIELDS
FIGURE 315: AVERAGE PRODUCTION/ACTIVE WELL (BOPD/WELL) 2010-2017 FOR PRUDHOE BAY UNIT FIELDS

FIGURE 316: AVERAGE PRODUCTION/ACTIVE PRODUCER (BOPD/WELL) FIELDS WITH ALPINE LIKE FORMATION
FIGURE 317: AVERAGE PRODUCTION/ACTIVE PRODUCER (BOPD/WELL) FIELDS WITH BROOKIAN FORMATION

FIGURE 318: AVERAGE PRODUCTION/ACTIVE PRODUCER (BOPD/WELL) FIELDS WITH IVISHAK/SAG FORMATION
FIGURE 319: AVERAGE PRODUCTION/ACTIVE PRODUCER (BOPD/WELL) FIELDS KUPARUK LIKE FORMATION

FIGURE 320: AVERAGE PRODUCTION/ACTIVE PRODUCER (BOPD/WELL) FIELDS WITH SCHRADER BLUFF LIKE FORMATION
FIGURE 321: KH/M VS. CUM OIL/ACTIVE PRODUCER PROFILE BY FIELD

FIGURE 322: ORIGINAL GAS OIL RATIO RANGES GROUPED BY OIL QUALITY
Figure 323: Original formation volume factor ranges grouped by oil quality.

Figure 324: Reference datum vs. original pressure.
FIGURE 325: CUM OIL VS. TOTAL WELLS BY FIELD

FIGURE 326: RECENT BADAMI UNIT PRODUCTION
FIGURE 327: BADAMI PRODUCTION AND ACTIVE WELLS

FIGURE 328: BADAMI GAS PRODUCTION AND INJECTION RATES
FIGURE 329: BADAMI GAS OIL RATIO VS CUM OIL

FIGURE 330: BADAMI WATERCUT VS CUM OIL
FIGURE 331: BADAMI PRESSURES

FIGURE 332: BADAMI DRILLING PERMITS BY YEAR
FIGURE 333: ALPINE PRESSURES

FIGURE 334: ALPINE FLUID PRODUCTION AND WATER INJECTION
FIGURE 335: ALPINE GAS PRODUCTION AND INJECTION

FIGURE 336: ALPINE GAS OIL RATIO VS CUM OIL
FIGURE 337: ALPINE WATERCUT VS CUM OIL

FIGURE 338: FIORD FLUID RATE AND WATER INJECTION
FIGURE 339: FIORD GAS PRODUCTION AND INJECTION

FIGURE 340: FIORD GAS OIL RATIO VS. CUM OIL
FIGURE 341: FJORD WATERCUT VS. CUM OIL

FIGURE 342: FJORD DRILLING PERMITS BY YEAR
FIGURE 343: FIORD PRESSURES

FIGURE 344: NANUQ FLUID RATE AND WATER INJECTION
FIGURE 345: NANUQ GAS PRODUCTION & INJECTION

FIGURE 346: NANUQ GAS OIL RATIO VS. CUM OIL
FIGURE 347: NANUQ WATERCUT VS. CUM OIL

FIGURE 348: NANUQ Pressures
FIGURE 349: NANUQ DRILLING PERMITS BY YEAR

FIGURE 350: QANNIK FLUID PRODUCTION & WATER INJECTION
FIGURE 351: QANNIK GAS OIL RATIO VS. CUM OIL

FIGURE 352: QANNIK WATERCUT VS. CUM OIL
FIGURE 353: QANNIK PRESSURES

FIGURE 354: QANNIK DRILLING PERMITS BY YEAR
FIGURE 355: RECENT DUCK ISLAND UNIT PRODUCTION

FIGURE 356: EIDER FLUID PRODUCTION AND WATER INJECTION
FIGURE 357: EIDER GAS OIL RATIO VS. CUM OIL

FIGURE 358: EIDER WATERCUT VS. CUM OIL
FIGURE 359: EIDER PRESSURES

FIGURE 360: EIDER DRILLING PERMITS BY YEAR
FIGURE 361: ENDICOTT FLUID PRODUCTION AND WATER INJECTION RATE

FIGURE 362: ENDICOTT GAS PRODUCTION AND INJECTION
FIGURE 363: ENDICOTT GAS OIL RATIO VS. CUM OIL

FIGURE 364: ENDICOTT WATERCUT VS. CUM OIL
FIGURE 365: ENDICOTT DRILLING PERMITS BY YEAR

FIGURE 366: ENDICOTT PRESSURES
FIGURE 367: SAG DELTA NORTH FLUID PRODUCTION AND WATER INJECTION RATE

FIGURE 368: SAG DELTA NORTH GOR VS. CUM OIL
FIGURE 369: SAG DELTA NORTH WATERCUT VS. CUM OIL

FIGURE 370: SAG DELTA NORTH PRESSURES
FIGURE 371: SAG DELTA NORTH DRILLING PERMITS BY YEAR

FIGURE 372: MIN KE GAS OIL RATIO VS. CUM OIL
FIGURE 377: MELTWATER FLUID PRODUCTION AND WATER INJECTION

FIGURE 378: MELTWATER GAS PRODUCTION AND INJECTION RATE
FIGURE 379: MELTWATER GAS OIL RATIO VS. CUM OIL

FIGURE 380: MELTWATER WATERCUT VS. CUM OIL
FIGURE 381: MELTWATER PRESSURES

FIGURE 382: MELTWATER DRILLING PERMITS BY YEAR
FIGURE 383: TABASCO FLUID PRODUCTION AND WATER INJECTION

FIGURE 384: TABASCO GAS OIL RATIO VS. CUM OIL
FIGURE 385: TABASCO WATERCUT VS. CUM OIL

FIGURE 386: TABASCO PRESSURES
FIGURE 387: TABASCO PRESSURES BY YEAR

FIGURE 388: TARN FLUID PRODUCTION AND WATER INJECTION
FIGURE 389: TARN GAS PRODUCTION AND INJECTION

FIGURE 390: TARN GAS OIL RATIO VS. CUM OIL
FIGURE 391: TARN WATERCUT VS. CUM OIL

FIGURE 392: TARN PRESSURES
FIGURE 393: TARN DRILLING PERMITS BY YEAR

FIGURE 394: WEST SAK FLUID PRODUCTION AND WATER INJECTION
FIGURE 395: WEST SAK GAS PRODUCTION AND INJECTION

FIGURE 396: WEST SAK GAS OIL RATIO VS. CUM OIL
FIGURE 397: WEST SAK WATERCUT VS. CUM OIL

FIGURE 398: WEST SAK PRESSURES
FIGURE 399: WEST SAK DRILLING PERMITS BY YEAR

FIGURE 400: RECENT MILNE POINT UNIT PRODUCTION
FIGURE 401: MILNE KUPARUK FLUID PRODUCTION AND WATER INJECTION

FIGURE 402: MILNE KUPARUK GAS PRODUCTION AND INJECTION
FIGURE 403: MILNE KUPARUK GAS OIL RATIO VS. CUM OIL

FIGURE 404: MILNE KUPARUK WATERCUT VS. CUM OIL
FIGURE 405: MILNE KUPARUK PRESSURES

FIGURE 406: MILNE SAG FLUID PRODUCTION AND WATER INJECTION
FIGURE 407: MILNE SAG GAS PRODUCTION AND INJECTION

FIGURE 408: MILNE SAG GAS OIL RATIO VS. CUM OIL
FIGURE 409: MILNE SAG WATERCUT VS. CUM OIL

FIGURE 410: MILNE SAG DRILLING PERMITS BY YEAR
FIGURE 411: MILNE SAG PRESSURES

FIGURE 412: MILNE SCHRADER BLUFF FLUID PRODUCTION AND WATER INJECTION
FIGURE 413: MILNE SCHRADER BLUFF GAS PRODUCTON AND INJECTION FIX ALL CHARTS LIKE THIS

FIGURE 414: MILNE SCHRADER BLUFF GAS OIL RATIO VS. CUM OIL
FIGURE 415: MILNE SCHRADER BLUFF WATERCUT VS. CUM OIL

FIGURE 416: MILNE SCHRADER BLUFF PRESSURES
FIGURE 417: MILNE UGNU GAS OIL RATIO VS. CUM OIL

FIGURE 418: MILNE UGNU WATERCUT VS. CUM OIL
FIGURE 419: MILNE UGNU DRILLING PERMITS BY YEAR

FIGURE 420: NORTHSTAR PRESSURES
FIGURE 421: NORTHSTAR KUPARUK GAS OIL RATIO VS. CUM OIL

FIGURE 422: NORTHSTAR KUPARUK WATERCUT VS. CUM OIL
FIGURE 423: NORTHSTAR KUPARUK PRESSURES

FIGURE 424: NORTHSTAR KUPARUK DRILLING PERMITS BY YEAR
FIGURE 425: OOOGURUK NUIQSUT GAS OIL RATIO VS. CUM OIL

FIGURE 426: OOOGURUK NUIQSUT WATERCUT VS. CUM OIL
FIGURE 427: OOOGURUK TOROK GAS OIL RATIO VS. CUM OIL

FIGURE 428: OOOGURUK TOROK WATERCUT VS. CUM OIL
FIGURE 429: OOOGURUK TOROK GAS PRODUCTION AND INJECTION

FIGURE 430: OOOGURUK TOROK PRESSURES
FIGURE 431: OOGURUK TOROK FLUID PRODUCTION AND WATER INJECTION RATE

FIGURE 432: NORTH PRUDHOE BAY PRESSURES
FIGURE 433: WEST BEACH WATERCUT VS CUM OIL

FIGURE 434: WEST BEACH GAS OIL RATIO VS. CUM OIL
FIGURE 435: WEST BEACH PRESSURES

FIGURE 436: PIKKA DEVELOPMENT MAP WITH ALTERNATIVE ROADS (UNITED STATES ARMY CORPS OF ENGINEERS, 2017)
FIGURE 437: DEPARTMENT OF REVENUE 10 YEAR FORECAST (UMEKWE, 2017)

FIGURE 438: COMPARATIVE CHART TO DOR 10 YEAR PRODUCTION FORECAST
FIGURE 439: NORTH SLOPE DRILLING ACTIVITY BY YEAR
BIBLIOGRAPHY

Alaska Department of Natural Resources. (2015, September). Prudhoe Bay Unit Map. Retrieved from Alaska Department of Natural Resources: http://dog.dnr.alaska.gov/units/Documents/UnitMaps/NorthSlope/PrudhoeBayUnitMap-201509.pdf

Alaska Department of Natural Resources, DOG. (2015, September). Pikka Unit Map.

Alaska Department of Natural Resources, DOG. (2017, April). North Slope Oil and Gas Activity Map.

Alaska Division of Oil and Gas. (2016, November 29). Approval of the Application to Expand the Pikka Unit.

AOGCC. (2008, April 11). Area Injection Order No. 34.

Caelus Natural Resources Alaska, LLC. (2017, February 1). Caelus Activity Update to the House Resources Committee.

Department of Natural Resources. (2015). Final Findings and Determination For Nuna Development Royalty Modification Application.

